+0  
 
0
601
1
avatar

(3^(4n)-3^(2n))\ (3^(3n) + 3^(2n))

 Jul 29, 2015

Best Answer 

 #1
avatar+21194 
+13

$$\small{\text{$
\begin{array}{rcl}
\dfrac{ 3^{4n}-3^{2n} } { 3^{3n} + 3^{2n} } \\
&=& \dfrac{ 3^{2n+2n}-3^{2n} } { 3^{2n+n} + 3^{2n} } \\\\
&=& \dfrac{ 3^{2n}3^{2n}-3^{2n} } { 3^{2n}3^{n} + 3^{2n} } \\\\
&=& \dfrac{ 3^{2n} (3^{2n}-1) } { 3^{2n} (3^{n} + 1) } \\\\
&=& \dfrac{ 3^{2n}-1 } { 3^{n}+1 } \\\\
&=& \dfrac{ (3^{n}-1)(3^{n}+1) } { 3^{n}+1 } \\\\
\mathbf{ \dfrac{ 3^{4n}-3^{2n} } { 3^{3n} + 3^{2n} } }&\mathbf{=} & \mathbf{3^{n}-1}
\end{array}
$}}$$

 

 Jul 29, 2015
 #1
avatar+21194 
+13
Best Answer

$$\small{\text{$
\begin{array}{rcl}
\dfrac{ 3^{4n}-3^{2n} } { 3^{3n} + 3^{2n} } \\
&=& \dfrac{ 3^{2n+2n}-3^{2n} } { 3^{2n+n} + 3^{2n} } \\\\
&=& \dfrac{ 3^{2n}3^{2n}-3^{2n} } { 3^{2n}3^{n} + 3^{2n} } \\\\
&=& \dfrac{ 3^{2n} (3^{2n}-1) } { 3^{2n} (3^{n} + 1) } \\\\
&=& \dfrac{ 3^{2n}-1 } { 3^{n}+1 } \\\\
&=& \dfrac{ (3^{n}-1)(3^{n}+1) } { 3^{n}+1 } \\\\
\mathbf{ \dfrac{ 3^{4n}-3^{2n} } { 3^{3n} + 3^{2n} } }&\mathbf{=} & \mathbf{3^{n}-1}
\end{array}
$}}$$

 

heureka Jul 29, 2015

11 Online Users

avatar

New Privacy Policy

We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive information about your use of our website.
For more information: our cookie policy and privacy policy.