+0  
 
0
43
3
avatar

1. Find the sum of the constants a, h, k and  such that
\(2x^2 - 8x + 7 = a(x - h)^2 + k\)
for all real numbers x.

 

2. Find the vertex of the graph of the equation \(x -y^2 + 6y =8\).

 

3. Find the area of the region enclosed by the graph of the equation \(x^2 + y^2 = 4x + 6y+13\).

Guest Jan 6, 2018
Sort: 

3+0 Answers

 #1
avatar+5888 
+1

1.  2x2 - 8x + 7

                                          Factor  2  out of the first two terms.

=   2(x2 - 4x) + 7

                                          Add and subtract  (4/2)2 , which is  4 .

=   2(x2 - 4x + 4 - 4) + 7

                                          Factor  x2 - 4x + 4  as a perfect square trinomial.

=   2( (x - 2)2 - 4 ) + 7

                                          Now distribute the  2  to the two terms in parenthesees.

=   2(x - 2)2 - 8 + 7

 

=   2(x - 2)2 - 1

 

So...   a = 2  ,   h = 2  ,   k = -1     ...and...     2  +  2  +  -1   =   3

hectictar  Jan 6, 2018
 #2
avatar+5888 
+1

2.

 

x - y2 + 6y   =   8

                                         Add  y2  to both sides, subtract  6y  from both sides.

x   =   y2 - 6y + 8

                                         Complete the square on the right side.

x   =   y2 - 6y + 9 - 9 + 8

 

x   =   (y - 3)2 - 1

 

The vertex is at  (-1, 3)

hectictar  Jan 6, 2018
 #3
avatar+5888 
+1

3.

 

x2 + y2   =   4x + 6y + 13     This is the equation of a circle. Let's get it in standard form...

 

x2 - 4x        +  y2 - 6y         =   13       Add  4  and  9  to both sides.

 

x2 - 4x + 4  +  y2 - 6y + 9   =   13 + 4 + 9

 

(x - 2)2  +  (y - 3)2   =   26

 

Let the radius of the circle be  r  ,  now we can see that  r2  =  26  .

 

area of the circle   =   pi * r2   =   pi * 26   =  26pi    sq. units

hectictar  Jan 6, 2018

11 Online Users

avatar
avatar
avatar
We use cookies to personalise content and ads, to provide social media features and to analyse our traffic. We also share information about your use of our site with our social media, advertising and analytics partners.  See details