+0  
 
0
1672
3
avatar

3^x=1/81 solve for x

 Nov 14, 2014

Best Answer 

 #3
avatar+118725 
+5

Yes, Mathematician,  that is when you take the log of both sides.

 

$$\\log3^x=log(1/81)\\
xlog3=log(1/81)\\
x=log(1/81)/log(3)\\$$

 

$${\frac{{log}_{10}\left({\frac{{\mathtt{1}}}{{\mathtt{81}}}}\right)}{{log}_{10}\left({\mathtt{3}}\right)}} = -{\mathtt{3.999\: \!999\: \!999\: \!999\: \!999\: \!9}}$$

there is a little rounding error - its not a problem but it is more elegant to do it by hand if you can.

 Nov 14, 2014
 #1
avatar+23254 
+5

Since  81  =  3^4

then:  1/81  =  3^-4

So:     3^x  =  3^-4     --->     x  =  -4

 Nov 14, 2014
 #2
avatar+1090 
0

Is there a way to solve without knowing 3^4=81?

 Nov 14, 2014
 #3
avatar+118725 
+5
Best Answer

Yes, Mathematician,  that is when you take the log of both sides.

 

$$\\log3^x=log(1/81)\\
xlog3=log(1/81)\\
x=log(1/81)/log(3)\\$$

 

$${\frac{{log}_{10}\left({\frac{{\mathtt{1}}}{{\mathtt{81}}}}\right)}{{log}_{10}\left({\mathtt{3}}\right)}} = -{\mathtt{3.999\: \!999\: \!999\: \!999\: \!999\: \!9}}$$

there is a little rounding error - its not a problem but it is more elegant to do it by hand if you can.

Melody Nov 14, 2014

1 Online Users

avatar