+0  
 
0
682
1
avatar

((3/x)+x2)8

a.) number of terms ? 9

b.) determine the middle term in the expansion, first in unsimplified terms and then in simplified ?

c.)will the expansion have a constant term ?Explain

 

Thanks in advance

 Jun 5, 2014

Best Answer 

 #2
avatar+118723 
+5

Yes the number of terms is 9      r=0,1,2,......9  The middle on is the 5th one which is r=4

((3/x)+x2)8

 

$$\mbox{The middle term is }\quad 8C4\times \left(\dfrac{3}{x}\right)^4\times(x^2)^4$$

You can simplify this yourself.

----------------------------------------

$$\mbox{The general term is }\quad 8Cr\times \left(\dfrac{3}{x}\right)^r\times(x^2)^{8-r}$$     

Where: $$0\le r\le 8\qquad \mox{ and }\qquad r \in Z$$

$$\mbox{This simplifies down to }\quad 8Cr\times 3^r\times x^{16-2r-r}=8Cr\times 3^r\times x^{16-3r}$$

Now if there is a constant term it will be when 16-3r=0 but the solution to this gives r as a non-integer.

So there must not be any constant term!

-----------------------------------------

 Jun 6, 2014
 #2
avatar+118723 
+5
Best Answer

Yes the number of terms is 9      r=0,1,2,......9  The middle on is the 5th one which is r=4

((3/x)+x2)8

 

$$\mbox{The middle term is }\quad 8C4\times \left(\dfrac{3}{x}\right)^4\times(x^2)^4$$

You can simplify this yourself.

----------------------------------------

$$\mbox{The general term is }\quad 8Cr\times \left(\dfrac{3}{x}\right)^r\times(x^2)^{8-r}$$     

Where: $$0\le r\le 8\qquad \mox{ and }\qquad r \in Z$$

$$\mbox{This simplifies down to }\quad 8Cr\times 3^r\times x^{16-2r-r}=8Cr\times 3^r\times x^{16-3r}$$

Now if there is a constant term it will be when 16-3r=0 but the solution to this gives r as a non-integer.

So there must not be any constant term!

-----------------------------------------

Melody Jun 6, 2014

3 Online Users

avatar