30!*2/20
\(30! \cdot \frac{2}{20} = 30! \cdot \frac{1}{10} = 30! \cdot \frac{1}{2\cdot 5} \)
Factorisation of 30!
\(\small{ \text{Exponent prime Number 2 } = [\frac{30}{2}]+[\frac{30}{2^2}]+[\frac{30}{2^3}]+[\frac{30}{2^4}]=15+7+3+1=26\\ \text{Exponent prime Number 3}= [\frac{30}{3}]+[\frac{30}{3^2}]+[\frac{30}{3^3}]=10+3+1=14\\ \text{Exponent prime Number 5}= [\frac{30}{5}]+[\frac{30}{5^2}]=6+1=7\\ \text{Exponent prime Number 7}= [\frac{30}{7}]=4\\ \text{Exponent prime Number 11}= [\frac{30}{11}]=2\\ \text{Exponent prime Number 13}= [\frac{30}{13}]=2\\ \text{Exponent prime Number 17}= [\frac{30}{17}]=1\\ \text{Exponent prime Number 19}= [\frac{30}{19}]=1\\ \text{Exponent prime Number 23}= [\frac{30}{23}]=1\\ \text{Exponent prime Number 29}= [\frac{30}{29}]=1\\ }\\\\ \mathbf{30! = 2^{26}\cdot 3^{14}\cdot 5^7\cdot 7^4 \cdot 11^2\cdot 13^2 \cdot 17\cdot 19\cdot 23 \cdot 29}\)
\(\small{ \begin{array}{rcl} 30! \cdot \frac{2}{20} \\ &=& 30! \cdot \frac{1}{2\cdot 5} \\ &=& \frac{2^{26}\cdot 3^{14}\cdot 5^7\cdot 7^4 \cdot 11^2\cdot 13^2 \cdot 17\cdot 19\cdot 23 \cdot 29 }{2\cdot 5 }\\ 30! \cdot \frac{2}{20}&=& 2^{25}\cdot 3^{14}\cdot 5^6\cdot 7^4 \cdot 11^2\cdot 13^2 \cdot 17\cdot 19\cdot 23 \cdot 29 \\ 30! \cdot \frac{2}{20}&=&26525285981219105863630848000000 \end{array} }\)