39!C5! picking 5 numbers from 1-39 please help!
$$\small{\text{
$
\left(\begin{array}{c}
39 \\ 5
\end{array}\right)
$
}}\\\\
\small{\text{
$
\begin{array}{ccc}
&=&\dfrac{39!}{5!\cdot (39-5)! }\\\\
&=&\dfrac{39!}{5!\cdot 34! }\\\\
&=&\dfrac{\not{34!}\cdot 35 \cdot 36 \cdot 37 \cdot 38 \cdot 39}{5!\cdot \not{34!} }\\\\
&=&\dfrac{35 \cdot 36 \cdot 37 \cdot 38 \cdot 39}{2\cdot 3 \cdot 4 \cdot 5}\\\\
&=&\dfrac{35}{5}\cdot \dfrac{36}{4}\cdot 37 \cdot \dfrac{38}{2} \cdot \dfrac{39}{3}\\\\
&=&7\cdot 9 \cdot 37 \cdot 19 \cdot 13\\\\
&=&575757
\end{array}
$
}}$$
The number of combinations you can make from 39 numbers taken 5 at a time, is 575757.
I don't believe that you meant to use the factorial signs.
Yes there are 39C5 different combinations that could be chosen
on the web2 calc you can enter it like this
nCr(39,5)
39!C5! picking 5 numbers from 1-39 please help!
$$\small{\text{
$
\left(\begin{array}{c}
39 \\ 5
\end{array}\right)
$
}}\\\\
\small{\text{
$
\begin{array}{ccc}
&=&\dfrac{39!}{5!\cdot (39-5)! }\\\\
&=&\dfrac{39!}{5!\cdot 34! }\\\\
&=&\dfrac{\not{34!}\cdot 35 \cdot 36 \cdot 37 \cdot 38 \cdot 39}{5!\cdot \not{34!} }\\\\
&=&\dfrac{35 \cdot 36 \cdot 37 \cdot 38 \cdot 39}{2\cdot 3 \cdot 4 \cdot 5}\\\\
&=&\dfrac{35}{5}\cdot \dfrac{36}{4}\cdot 37 \cdot \dfrac{38}{2} \cdot \dfrac{39}{3}\\\\
&=&7\cdot 9 \cdot 37 \cdot 19 \cdot 13\\\\
&=&575757
\end{array}
$
}}$$