+0  
 
0
515
2
avatar

A cylinder with base of 3 units is inscribed in a sphere of radius 5 units. Find the total surface area of the cylinder plus the total surface area of the sphere.

 Jan 9, 2021
 #1
avatar+59 
0

can you send a sketch of the figure? to make the problem more understandable

 Jan 9, 2021
 #2
avatar+130071 
+1

Surface area of sphere   =   4pi * radius ^2 =  4 pi (5)^2  = 100pi

 

Look at the graph here  : https://www.desmos.com/calculator/e2lfbnrrza

 

We can imagine this graph as  being a  cross-sectional representation of our problem

 

The equation of the sphere's cross-section is  x^2 + y^2   = 25

 

Note  that    y =  sqrt  (25  -x^2)        (1)

 

Since  the base of the cylinder  =3, its radius  =1.5

 

Using (1), we can find (1/2)  of the  height of the cylinder as

 

y = sqrt ( 25  -1.5^2 )   = sqrt (  25 - 2.25) =  sqrt ( 100/4 - 9/4)  = sqrt (91) / sqrt (4)   =sqrt (91)  /2

 

So....the height is twice this  = sqrt (91)

 

So....the surface area of the sphere =   2pi radius * height  =  2pi (1.5)sqrt (91)   =  3pi sqrt (91)

 

Total surface area =    pi  ( 100 + 3sqrt (91)) ≈  404.07  units^2  

 

 

cool cool cool

 Jan 9, 2021

0 Online Users