+0  
 
0
462
2
avatar

4^(3/2)*16^-(3/4)

Guest Jun 15, 2015

Best Answer 

 #1
avatar+14536 
+8

$${{\mathtt{4}}}^{\left({\frac{{\mathtt{3}}}{{\mathtt{2}}}}\right)}{\mathtt{\,\times\,}}{{\mathtt{16}}}^{{\mathtt{\,-\,}}\left({\frac{{\mathtt{3}}}{{\mathtt{4}}}}\right)} = {\frac{{{\mathtt{2}}}^{{\mathtt{3}}}}{{{\mathtt{2}}}^{{\mathtt{3}}}}}$$ =  1

 

$${{\mathtt{4}}}^{\left({\frac{{\mathtt{2}}}{{\mathtt{3}}}}\right)} = {{\left({{\mathtt{2}}}^{{\mathtt{2}}}\right)}}^{\left({\frac{{\mathtt{3}}}{{\mathtt{2}}}}\right)}$$$${{\mathtt{2}}}^{{\mathtt{3}}}$$

 

$${{\mathtt{16}}}^{{\mathtt{\,-\,}}\left({\frac{{\mathtt{3}}}{{\mathtt{4}}}}\right)} = {\frac{{\mathtt{1}}}{\left({\left({{\mathtt{2}}}^{{\mathtt{4}}}\right)}^{\left({\frac{{\mathtt{3}}}{{\mathtt{4}}}}\right)}\right)}}$$      = $${\frac{{\mathtt{1}}}{{{\mathtt{2}}}^{{\mathtt{3}}}}}$$

 

 

$${\frac{{{\mathtt{2}}}^{{\mathtt{3}}}{\mathtt{\,\times\,}}{\mathtt{1}}}{{{\mathtt{2}}}^{{\mathtt{3}}}}} = {\mathtt{1}}$$

radix  Jun 15, 2015
 #1
avatar+14536 
+8
Best Answer

$${{\mathtt{4}}}^{\left({\frac{{\mathtt{3}}}{{\mathtt{2}}}}\right)}{\mathtt{\,\times\,}}{{\mathtt{16}}}^{{\mathtt{\,-\,}}\left({\frac{{\mathtt{3}}}{{\mathtt{4}}}}\right)} = {\frac{{{\mathtt{2}}}^{{\mathtt{3}}}}{{{\mathtt{2}}}^{{\mathtt{3}}}}}$$ =  1

 

$${{\mathtt{4}}}^{\left({\frac{{\mathtt{2}}}{{\mathtt{3}}}}\right)} = {{\left({{\mathtt{2}}}^{{\mathtt{2}}}\right)}}^{\left({\frac{{\mathtt{3}}}{{\mathtt{2}}}}\right)}$$$${{\mathtt{2}}}^{{\mathtt{3}}}$$

 

$${{\mathtt{16}}}^{{\mathtt{\,-\,}}\left({\frac{{\mathtt{3}}}{{\mathtt{4}}}}\right)} = {\frac{{\mathtt{1}}}{\left({\left({{\mathtt{2}}}^{{\mathtt{4}}}\right)}^{\left({\frac{{\mathtt{3}}}{{\mathtt{4}}}}\right)}\right)}}$$      = $${\frac{{\mathtt{1}}}{{{\mathtt{2}}}^{{\mathtt{3}}}}}$$

 

 

$${\frac{{{\mathtt{2}}}^{{\mathtt{3}}}{\mathtt{\,\times\,}}{\mathtt{1}}}{{{\mathtt{2}}}^{{\mathtt{3}}}}} = {\mathtt{1}}$$

radix  Jun 15, 2015
 #2
avatar+94088 
+5

$$\\4^{3/2}*16^{-3/4}\\\\
=(4^{1/2})^3*(16^{1/4})^{-3}\\\\
=(2)^3*(2)^{-3}\\\\
=2^{3-3}\\\\
=2^0\\\\
=1$$

Melody  Jun 15, 2015

29 Online Users

New Privacy Policy

We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive information about your use of our website.
For more information: our cookie policy and privacy policy.