+0  
 
0
277
3
avatar

4x+y=5 ;x+y=1 ?????      aking first-degree equations with two unknowns?

Guest Jun 10, 2015

Best Answer 

 #2
avatar+14536 
+10

4x + y  = 5


  x + y = 1      | Subtraction      =>     3x = 4   =>      x = $${\frac{{\mathtt{4}}}{{\mathtt{3}}}}$$         y  = 1 - 4/3 = $${\mathtt{\,-\,}}{\frac{{\mathtt{1}}}{{\mathtt{3}}}}$$

radix  Jun 10, 2015
Sort: 

3+0 Answers

 #1
avatar+90988 
+10

4x+y=5 (1)

x+y=1   (2)

(1)-(2)

3x=4

x=4/3

Sub into (2)

4/3 + y = 1

y=-1/3

Melody  Jun 10, 2015
 #2
avatar+14536 
+10
Best Answer

4x + y  = 5


  x + y = 1      | Subtraction      =>     3x = 4   =>      x = $${\frac{{\mathtt{4}}}{{\mathtt{3}}}}$$         y  = 1 - 4/3 = $${\mathtt{\,-\,}}{\frac{{\mathtt{1}}}{{\mathtt{3}}}}$$

radix  Jun 10, 2015
 #3
avatar+18712 
+5

4x+y=5 ;x+y=1 ?????      aking first-degree equations with two unknowns ?

 

$$\small{\text{$
\begin{array}{lccrcl}
(1)&:& & 4x + y &=& 5 \\
(2)&:& & x + y &=& 1 \\
\hline
&\\
(1) - (2)&:& & 4x - x + y - y &=& 5-1\\
& & & 3x &=& 4 \qquad |\qquad : 3\\
& & & \textcolor[rgb]{1,0,0}{x} &\textcolor[rgb]{1,0,0}{=}& \textcolor[rgb]{1,0,0}{ \frac{4}{3} }\\
\hline
&\\
(2)&:& & x + y &=& 1 \\
& & & \frac{4}{3} +y &=& 1 \qquad |\qquad -\frac{4}{3}\\
& & & y &=& 1 -\frac{4}{3} \\
& & & \textcolor[rgb]{1,0,0}{y} &\textcolor[rgb]{1,0,0}{=}& \textcolor[rgb]{1,0,0}{-\frac{1}{3}} \\
\end{array}
$}}$$

 

heureka  Jun 10, 2015

10 Online Users

avatar
We use cookies to personalise content and ads, to provide social media features and to analyse our traffic. We also share information about your use of our site with our social media, advertising and analytics partners.  See details