4.9t^2+16.2t-59.8=0
$${\mathtt{4.9}}{\mathtt{\,\times\,}}{{\mathtt{t}}}^{{\mathtt{2}}}{\mathtt{\,\small\textbf+\,}}{\mathtt{16.2}}{\mathtt{\,\times\,}}{\mathtt{t}}{\mathtt{\,-\,}}{\mathtt{59.8}} = {\mathtt{0}} \Rightarrow \left\{ \begin{array}{l}{\mathtt{t}} = {\mathtt{\,-\,}}{\frac{\left({\sqrt{{\mathtt{35\,863}}}}{\mathtt{\,\small\textbf+\,}}{\mathtt{81}}\right)}{{\mathtt{49}}}}\\
{\mathtt{t}} = {\frac{\left({\sqrt{{\mathtt{35\,863}}}}{\mathtt{\,-\,}}{\mathtt{81}}\right)}{{\mathtt{49}}}}\\
\end{array} \right\} \Rightarrow \left\{ \begin{array}{l}{\mathtt{t}} = -{\mathtt{5.517\: \!863\: \!036\: \!299\: \!136\: \!9}}\\
{\mathtt{t}} = {\mathtt{2.211\: \!740\: \!587\: \!319\: \!545\: \!1}}\\
\end{array} \right\}$$
59.8=16.2*t+4.9t^2
rearrange
4.9t^2+16.2t-59.8=0
now solve it useing the quadratic formula.
4.9t^2+16.2t-59.8=0
$${\mathtt{4.9}}{\mathtt{\,\times\,}}{{\mathtt{t}}}^{{\mathtt{2}}}{\mathtt{\,\small\textbf+\,}}{\mathtt{16.2}}{\mathtt{\,\times\,}}{\mathtt{t}}{\mathtt{\,-\,}}{\mathtt{59.8}} = {\mathtt{0}} \Rightarrow \left\{ \begin{array}{l}{\mathtt{t}} = {\mathtt{\,-\,}}{\frac{\left({\sqrt{{\mathtt{35\,863}}}}{\mathtt{\,\small\textbf+\,}}{\mathtt{81}}\right)}{{\mathtt{49}}}}\\
{\mathtt{t}} = {\frac{\left({\sqrt{{\mathtt{35\,863}}}}{\mathtt{\,-\,}}{\mathtt{81}}\right)}{{\mathtt{49}}}}\\
\end{array} \right\} \Rightarrow \left\{ \begin{array}{l}{\mathtt{t}} = -{\mathtt{5.517\: \!863\: \!036\: \!299\: \!136\: \!9}}\\
{\mathtt{t}} = {\mathtt{2.211\: \!740\: \!587\: \!319\: \!545\: \!1}}\\
\end{array} \right\}$$