a=5 b=19 c=-4
we can use bhaskara:
Δ=b^2-4ac
Δ=19^2-4*5*(-4)
Δ=361+80=441
x'=$${\frac{\left({\mathtt{\,-\,}}{\mathtt{b}}{\mathtt{\,\small\textbf+\,}}{\sqrt{{\mathtt{441}}}}\right)}{\left({\mathtt{2}}{\mathtt{\,\times\,}}{\mathtt{a}}\right)}}$$ = $${\frac{\left({\mathtt{\,-\,}}{\mathtt{19}}{\mathtt{\,\small\textbf+\,}}{\mathtt{21}}\right)}{\left({\mathtt{2}}{\mathtt{\,\times\,}}{\mathtt{5}}\right)}}$$= 0.2
x''=$${\frac{\left({\mathtt{\,-\,}}{\mathtt{19}}{\mathtt{\,-\,}}{\mathtt{21}}\right)}{\left({\mathtt{10}}\right)}} = {\mathtt{\,-\,}}{\frac{{\mathtt{40}}}{{\mathtt{10}}}} = -{\mathtt{4}}$$
so the roots of the function are -4 and 0.2
5x² + 19x - 4 = 0
Let's see if we can factor this: (5x - 1)(x + 4) = 0
So, now either 5x - 1 = 0 or x + 4 = 0
5x = 1 x = -4
x = 1/5
a=5 b=19 c=-4
we can use bhaskara:
Δ=b^2-4ac
Δ=19^2-4*5*(-4)
Δ=361+80=441
x'=$${\frac{\left({\mathtt{\,-\,}}{\mathtt{b}}{\mathtt{\,\small\textbf+\,}}{\sqrt{{\mathtt{441}}}}\right)}{\left({\mathtt{2}}{\mathtt{\,\times\,}}{\mathtt{a}}\right)}}$$ = $${\frac{\left({\mathtt{\,-\,}}{\mathtt{19}}{\mathtt{\,\small\textbf+\,}}{\mathtt{21}}\right)}{\left({\mathtt{2}}{\mathtt{\,\times\,}}{\mathtt{5}}\right)}}$$= 0.2
x''=$${\frac{\left({\mathtt{\,-\,}}{\mathtt{19}}{\mathtt{\,-\,}}{\mathtt{21}}\right)}{\left({\mathtt{10}}\right)}} = {\mathtt{\,-\,}}{\frac{{\mathtt{40}}}{{\mathtt{10}}}} = -{\mathtt{4}}$$
so the roots of the function are -4 and 0.2