+0  
 
0
738
3
avatar

-7/2(2x+6/7)-3

 Sep 26, 2014

Best Answer 

 #3
avatar+130071 
+5

(-7/2)(2x+6/7)-3      distribute the -7/2 over the terms in the parentheses

(-14/2)x - 42/14 - 3  =

-7x - 3 - 3 =

-7x - 6

 

 Sep 26, 2014
 #1
avatar+148 
+3

I don't think this is even possible because there is no equal sign

 Sep 26, 2014
 #2
avatar+1006 
+5

$${\mathtt{\,-\,}}{\frac{{\mathtt{7}}}{{\mathtt{2}}}}{\mathtt{\,\times\,}}\left({\mathtt{2}}{\mathtt{\,\times\,}}{\mathtt{x}}{\mathtt{\,\small\textbf+\,}}{\frac{{\mathtt{6}}}{{\mathtt{7}}}}\right){\mathtt{\,-\,}}{\mathtt{3}}$$

 

First you distribute the -7/2.

 

$${\mathtt{\,-\,}}\left({\frac{{\mathtt{7}}}{{\mathtt{2}}}}{\mathtt{\,\times\,}}\left({\mathtt{2}}\right)\right) = -{\mathtt{7}}$$

$${\mathtt{\,-\,}}\left({\frac{{\mathtt{7}}}{{\mathtt{2}}}}{\mathtt{\,\times\,}}\left({\frac{{\mathtt{6}}}{{\mathtt{7}}}}\right)\right) = -{\mathtt{3}}$$

 

This makes the equation into something a bit more legible.

 

$$\left({\mathtt{\,-\,}}{\mathtt{7}}{\mathtt{\,\times\,}}{\mathtt{x}}{\mathtt{\,-\,}}{\mathtt{3}}\right){\mathtt{\,-\,}}{\mathtt{3}}$$

 

Then you just subtract 3.

 

$$\left({\mathtt{\,-\,}}{\mathtt{7}}{\mathtt{\,\times\,}}{\mathtt{x}}{\mathtt{\,-\,}}{\mathtt{3}}{\mathtt{\,-\,}}{\mathtt{3}}\right)$$

$$\left({\mathtt{\,-\,}}{\mathtt{7}}{\mathtt{\,\times\,}}{\mathtt{x}}{\mathtt{\,-\,}}{\mathtt{6}}\right)$$

 

At this point you can drop the parentheses and you have your most simplified answer: -7x - 6

 Sep 26, 2014
 #3
avatar+130071 
+5
Best Answer

(-7/2)(2x+6/7)-3      distribute the -7/2 over the terms in the parentheses

(-14/2)x - 42/14 - 3  =

-7x - 3 - 3 =

-7x - 6

 

CPhill Sep 26, 2014

1 Online Users