+0  
 
0
2442
3
avatar

(8/125)-2/3

 Nov 2, 2016
 #1
avatar
0

\(\frac{1}{\sqrt[3]{\left(\frac{8}{125}\right)^2}}\)

.
 Nov 2, 2016
 #2
avatar+1904 
+3

There are two ways to solve this problem.

 

First way:

 

\({\frac{8}{125}}^{-\frac{2}{3}}\)

 

\(\sqrt[3]{{(\frac{8}{125})}^{-2}}\)

 

\(\sqrt[3]{\frac{{8}^{-2}}{{125}^{-2}}}\)

 

\(\sqrt[3]{\frac{{125}^{2}}{{8}^{2}}}\)

 

\(\sqrt[3]{\frac{15625}{{8}^{2}}}\)

 

\(\sqrt[3]{\frac{15625}{64}}\)

 

\(\frac{\sqrt[3]{15625}}{\sqrt[3]{64}}\)

 

\(\frac{\sqrt[3]{25\times25\times25}}{\sqrt[3]{64}}\)

 

\(\frac{25}{\sqrt[3]{64}}\)

 

\(\frac{25}{\sqrt[3]{4\times4\times4}}\)

 

\(\frac{25}{4}\)

 

\(6.25\)

 

Second way:

 

\({\frac{8}{125}}^{-\frac{2}{3}}\)

 

\(\frac{1}{{(\frac{8}{125})}^{\frac{2}{3}}}\)

 

\(\frac{1}{\frac{{8}^{\frac{2}{3}}}{{125}^{\frac{2}{3}}}}\)

 

\(\frac{1}{\frac{({2}^{{3})^{\frac{2}{3}}}}{{125}^{\frac{2}{3}}}}\)

 

\(\frac{1}{\frac{{2}^{\frac{6}{3}}}{{125}^{\frac{2}{3}}}}\)

 

\(\frac{1}{\frac{{2}^{2}}{{125}^{\frac{2}{3}}}}\)

 

\(\frac{1}{\frac{4}{{125}^{\frac{2}{3}}}}\)

 

\(\frac{1}{\frac{4}{({5}^{{3})^{\frac{2}{3}}}}}\)

 

\(\frac{1}{\frac{4}{{5}^{\frac{6}{3}}}}\)

 

\(\frac{1}{\frac{4}{{5}^{2}}}\)

 

\(\frac{1}{\frac{4}{25}}\)

 

\(1\times\frac{25}{4}\)

 

\(\frac{25}{4}\)

 

\(6.25\)

 Nov 2, 2016
 #3
avatar+129933 
0

Thanks Gibson.....here's another "trick".....note     (a /b)-m/n   =  (b /a)m/n     ....therefore........

 

(8/125)-2/3   =

 

(125 / 8 )2/3   =

 

[(125 / 8)1/3 2  =

 

[ 5 / 2 ] 2  =

 

25 / 4

 

 

cool cool cool

 Nov 2, 2016

0 Online Users