+0  
 
0
565
2
avatar

8 sec2 x + 4 tan2 x − 12 = 0

Guest Jul 17, 2014

Best Answer 

 #2
avatar+91045 
+10

$$\begin{array}{rlll}
8sec^2x+4tan^2x-12&=&0\\\\
\frac{8}{cos^2x}+4(\frac{1}{cos^2x}-1)-12&=&0\\\\
\frac{8}{cos^2x}+\frac{4}{cos^2x}-4-12&=&0\\\\
\frac{12}{cos^2x}-16&=&0\\\\
\frac{12}{cos^2x}&=&16\\\\
\frac{3}{cos^2x}&=&4\\\\
\frac{3}{4}&=&cos^2x\\\\
cos^2x&=&\frac{3}{4}\\\\
cos\;x&=&\frac{\pm \sqrt3}{2}\\\\
x&=&n\pi\pm \frac{\pi}{6}\qquad \mbox{where}\;\;n \in Z\\\\

\end{array}$$

Melody  Jul 18, 2014
Sort: 

2+0 Answers

 #1
avatar
0

(2 sin2 x − 1)(3 tan2 x − 1) = 0

Guest Jul 17, 2014
 #2
avatar+91045 
+10
Best Answer

$$\begin{array}{rlll}
8sec^2x+4tan^2x-12&=&0\\\\
\frac{8}{cos^2x}+4(\frac{1}{cos^2x}-1)-12&=&0\\\\
\frac{8}{cos^2x}+\frac{4}{cos^2x}-4-12&=&0\\\\
\frac{12}{cos^2x}-16&=&0\\\\
\frac{12}{cos^2x}&=&16\\\\
\frac{3}{cos^2x}&=&4\\\\
\frac{3}{4}&=&cos^2x\\\\
cos^2x&=&\frac{3}{4}\\\\
cos\;x&=&\frac{\pm \sqrt3}{2}\\\\
x&=&n\pi\pm \frac{\pi}{6}\qquad \mbox{where}\;\;n \in Z\\\\

\end{array}$$

Melody  Jul 18, 2014

7 Online Users

avatar
avatar
avatar
We use cookies to personalise content and ads, to provide social media features and to analyse our traffic. We also share information about your use of our site with our social media, advertising and analytics partners.  See details