+0  
 
0
1
1487
3
avatar

a=8. c=5, B=40 How do I get A with sin B/b=sinA/a

 Sep 6, 2015

Best Answer 

 #3
avatar+130513 
+10

You're correct Guest.....I did everything wrong....LOL!!!....let me try again!!!

 

Using  [the  correct !!!] Law of Cosines to find b, we have

 

b^2 = 8^2 + 5^2 - 2(8)(5)cos(40)

 

b =  sqrt [8^2 + 5^2 - 40cos(40)]  = about 5.26

 

 

So we have

 

SinA / a = SinB/ b 

 

SinA / 8  = sin(40) / 5.26

 

SinA  = 8*sin(40)/5.26

 

And using the Sine inverse, we have

 

Sin-1 [8* sin (40) / 5.26 ]  = A = about 78.37°

 

[Thanks, Guest for spotting my stupid mistakes  !!!  ]

 

 

 

cool cool cool

 Sep 6, 2015
 #1
avatar+130513 
+5

..............

 Sep 6, 2015
edited by CPhill  Sep 6, 2015
 #2
avatar
+5

Sorry Chris.I think you are doing soemthing wrong

first of all,one of the law of cosine is 

\(b^2=a^2+c^2-2ac*cosB\)

not

\(b^2=a^2+c^2-2ac*sinB\)

 

and this not a SSA situtiation.note that the given is side a,side c and angle B

So this a SAS situation.wink

 Sep 6, 2015
 #3
avatar+130513 
+10
Best Answer

You're correct Guest.....I did everything wrong....LOL!!!....let me try again!!!

 

Using  [the  correct !!!] Law of Cosines to find b, we have

 

b^2 = 8^2 + 5^2 - 2(8)(5)cos(40)

 

b =  sqrt [8^2 + 5^2 - 40cos(40)]  = about 5.26

 

 

So we have

 

SinA / a = SinB/ b 

 

SinA / 8  = sin(40) / 5.26

 

SinA  = 8*sin(40)/5.26

 

And using the Sine inverse, we have

 

Sin-1 [8* sin (40) / 5.26 ]  = A = about 78.37°

 

[Thanks, Guest for spotting my stupid mistakes  !!!  ]

 

 

 

cool cool cool

CPhill Sep 6, 2015

1 Online Users