+0  
 
0
4
87705
5
avatar+68 

A ball is thrown into the air. The height in feet of the ball can be modeled by the equation h = -16t 2 + 20t + 6 where t is the time in seconds, the ball is in the air. When will the ball hit the ground? How high will the ball go?

 Jan 3, 2017

Best Answer 

 #4
avatar+101 
+5

Omi67 made a good job, it was the answer :)

 Jan 3, 2017
 #1
avatar+37146 
+5

When the ball hits the ground  h= 0

so set your equation to = o and solve for t

Need more help???

0 - -16t^2 +20t +6      Solve for 't'  

 Jan 3, 2017
 #2
avatar+12531 
+5

A ball is thrown into the air. The height in feet of the ball can be modeled by the equation h = -16t 2 + 20t + 6 where t is the time in seconds, the ball is in the air. When will the ball hit the ground? How high will the ball go?

 

 Jan 3, 2017
 #3
avatar+129845 
+5

h = -16t^ 2 + 20t + 6     ....the ball will hit the ground when h  = 0

 

0 = -16t^2  + 20t   + 6      factor

 

0  = ( -8t  -  2 )  ( 2t  - 3)     set each  factor to 0

 

-8t  -  2  =  0                                 and                  2t  - 3   = 0

 

-8t   = 2                                                                 2t   =   3

 

t  = -2/8  = - 1/4  sec   [reject]                                t  = 3/2 sec  = 1.5 sec

 

 

Max ht  will be reached at [ -b / 2a ]    sec    =  -20 / [ 2(-16)]  =  20/32  =  5/8 sec

 

Sub this back ino the function

 

-16(5/8)^ 2 + 20(5/8) + 6  =   12.25  ft

 

Here's the graph :  https://www.desmos.com/calculator/1yozw3jh1c

 

 

 

cool cool cool  

 Jan 3, 2017
 #4
avatar+101 
+5
Best Answer

Omi67 made a good job, it was the answer :)

Majid Jan 3, 2017
 #5
avatar+37146 
+5

How high does it go?    You can find the max (or min) value of a quadratic by the formula 

c-b^2/(4a)

6- (20^2)/(4(-16) = 12.25 feet  max height

 

Time to hit ground

0 = -16t^2+20t+6       (had a typo after the ' 0 ' in my previous answer)

Quadratic Formula yields   

t=  (-20 +- sqrt(20^2 - 4(-16)(6)) / 2(-16)   

 =   -20 +- 28   /     -32     =  -.25    or  1.5 sec    (Throw out the neg answer....you can't have negative time)

 

 I accept the Terms of Service and Privacy Policy

 Jan 3, 2017

2 Online Users