+0  
 
0
249
1
avatar

A ball travels on a parabolic path in which the height (in feet) is given by the expression $-16t^2+80t+21$, where $t$ is the time after launch. What is the maximum height of the ball?

Guest Jan 29, 2018
edited by Guest  Jan 29, 2018

Best Answer 

 #1
avatar+20581 
+2

A ball travels on a parabolic path in which the height (in feet) is given by the expression $-16t^2+80t+21$,
where $t$ is the time after launch.
What is the maximum height of the ball?

 

 

The graph:

 

\(\begin{array}{|lrcll|} \hline & h(t) &=& -16t^2+80t+21 \\ h = 0 \ ? \\ & -16t^2+80t+21 &=& 0 \\\\ & t_{1,2} &=& \dfrac{-80 \pm\sqrt{80^2-4\cdot(-16)\cdot21}}{2\cdot(-16)} \\\\ & &=& \dfrac{-80 \pm\sqrt{6400+1344} }{-32} \\\\ & t_{1,2} &=& \dfrac{-80 \pm88}{-32} \\\\ & t_1 &=& \dfrac{-80 + 88}{-32} \\\\ & &=& \dfrac{8}{-32} \\\\ & \mathbf{t_1} &\mathbf{=}& \mathbf{-0.25} \\\\ & t_2 &=& \dfrac{-80 - 88}{-32} \\\\ & &=& \dfrac{168}{32} \\\\ & \mathbf{t_2} &\mathbf{=}& \mathbf{5.25} \\\\ &t_{h_\text{max}} &=& \dfrac{t_1+t_2}{2} \\\\ & &=& \dfrac{-0.25+5.25}{2} \\\\ & &=& \dfrac{5}{2} \\\\ &\mathbf{t_{h_\text{max}}} &\mathbf{=}& \mathbf{2.5} \\ \hline \end{array}\)

 

\(\begin{array}{|rcll|} \hline h_\text{max} &=& -16\mathbf{t_{h_\text{max}}}^2+80\mathbf{t_{h_\text{max}}}+21 \quad & | \quad \mathbf{t_{h_\text{max}} = 2.5} \\ &=& -16\cdot 2.5^2+80\cdot 2.5+21 \\ &=& -100+200+21 \\ &\mathbf{=}& \mathbf{121~ \text{feet}}\\ \hline \end{array}\)

 

The maximum height of the ball is \( \mathbf{121~ \text{feet}}\)

 

laugh

heureka  Jan 29, 2018
 #1
avatar+20581 
+2
Best Answer

A ball travels on a parabolic path in which the height (in feet) is given by the expression $-16t^2+80t+21$,
where $t$ is the time after launch.
What is the maximum height of the ball?

 

 

The graph:

 

\(\begin{array}{|lrcll|} \hline & h(t) &=& -16t^2+80t+21 \\ h = 0 \ ? \\ & -16t^2+80t+21 &=& 0 \\\\ & t_{1,2} &=& \dfrac{-80 \pm\sqrt{80^2-4\cdot(-16)\cdot21}}{2\cdot(-16)} \\\\ & &=& \dfrac{-80 \pm\sqrt{6400+1344} }{-32} \\\\ & t_{1,2} &=& \dfrac{-80 \pm88}{-32} \\\\ & t_1 &=& \dfrac{-80 + 88}{-32} \\\\ & &=& \dfrac{8}{-32} \\\\ & \mathbf{t_1} &\mathbf{=}& \mathbf{-0.25} \\\\ & t_2 &=& \dfrac{-80 - 88}{-32} \\\\ & &=& \dfrac{168}{32} \\\\ & \mathbf{t_2} &\mathbf{=}& \mathbf{5.25} \\\\ &t_{h_\text{max}} &=& \dfrac{t_1+t_2}{2} \\\\ & &=& \dfrac{-0.25+5.25}{2} \\\\ & &=& \dfrac{5}{2} \\\\ &\mathbf{t_{h_\text{max}}} &\mathbf{=}& \mathbf{2.5} \\ \hline \end{array}\)

 

\(\begin{array}{|rcll|} \hline h_\text{max} &=& -16\mathbf{t_{h_\text{max}}}^2+80\mathbf{t_{h_\text{max}}}+21 \quad & | \quad \mathbf{t_{h_\text{max}} = 2.5} \\ &=& -16\cdot 2.5^2+80\cdot 2.5+21 \\ &=& -100+200+21 \\ &\mathbf{=}& \mathbf{121~ \text{feet}}\\ \hline \end{array}\)

 

The maximum height of the ball is \( \mathbf{121~ \text{feet}}\)

 

laugh

heureka  Jan 29, 2018

33 Online Users

avatar
avatar
avatar
avatar
avatar
avatar
avatar

New Privacy Policy

We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive information about your use of our website.
For more information: our cookie policy and privacy policy.