+0  
 
+1
43
1
avatar+809 

Suppose that a and b  are nonzero real numbers, and that the equation \(x^2+ax+b=0\) has solutions a and b. Find the ordered pair (a,b).

 Dec 25, 2018
 #1
avatar+3576 
+3

\(\text{as }a \text{ and }b \text{ are solutions to }x^2 + ax + b = 0\\ \text{we can write}\\ x^2 + ax + b = (x-a)(x-b) = x^2 -(a+b)x + ab\\ a = -(a+b) \text{ and } b= a b\\ b = -2a\\ b = a(-2a) = -2a^2\\ -2a = -2a^2 \Rightarrow a = 1\\ b = -2a = -2\\ (a,b) = (1,-2) \)

.
 Dec 25, 2018

32 Online Users

avatar
avatar
avatar
avatar

New Privacy Policy

We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive information about your use of our website.
For more information: our cookie policy and privacy policy.