We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive pseudonymised information about your use of our website. cookie policy and privacy policy.
 
+0  
 
0
498
3
avatar

A circle of radius 5 with its center at $(0,0)$ is drawn on a Cartesian coordinate system. How many lattice points (points with integer coordinates) lie within or on this circle?

 Jan 14, 2018

Best Answer 

 #2
avatar+101761 
+1

The total number of   lattice ponts is given by

 

1  +  (4 * 5)  + 

4 *  [  floor √[ 5^2  - 1^2]  +  floor √ [5^2  - 2^2]  + floor √[5^2  - 3^2] + floor √[5^2 - 4^2]  ]  =

 

1  + 20  +

4 *  [  floor √24  +  floor  √21  +  floor √16  +  floor √9 ]  =

 

21  + 4 [  4 + 4 + 4  + 3 ]  =

 

21  +  4 [ 15]  =

 

81

 

 

cool cool cool

 Jan 15, 2018
 #1
avatar+267 
0

Start with the 4 "poles" i.e (5,0), (0,5), (-5,0), (0,-5) 

 

Each quadrant of the circle has 2 integer values (3,4) and (4,3) - Since (3,4,5) is a pythagorean triple

 

 

 

4 quadrants give 8 more points so 12 points in total

 Jan 14, 2018
 #2
avatar+101761 
+1
Best Answer

The total number of   lattice ponts is given by

 

1  +  (4 * 5)  + 

4 *  [  floor √[ 5^2  - 1^2]  +  floor √ [5^2  - 2^2]  + floor √[5^2  - 3^2] + floor √[5^2 - 4^2]  ]  =

 

1  + 20  +

4 *  [  floor √24  +  floor  √21  +  floor √16  +  floor √9 ]  =

 

21  + 4 [  4 + 4 + 4  + 3 ]  =

 

21  +  4 [ 15]  =

 

81

 

 

cool cool cool

CPhill Jan 15, 2018
 #3
avatar+22496 
+1

A circle of radius 5 with its center at $(0,0)$ is drawn on a Cartesian coordinate system.

How many lattice points (points with integer coordinates) lie within or on this circle?

 

A Calculation of the Number of Lattice Points within or on the circle:

 

Let \( \lfloor x \rfloor \) be the largest integer equal to or less than x.

 

Example:
\(\lfloor 3.53553390593 \rfloor = 3\)
\(\lfloor -3.53553390593 \rfloor = -4\)

 

 

 

Noted by Gauss:

Let r  radius of the circle = 5

Let \(x = r^2\)

 

\(\begin{array}{|rcll|} \hline A_2(x) &=& 1 + 4\lfloor \sqrt{x} \rfloor + 4 \lfloor \sqrt{\frac{x}{2}} \rfloor ^2 + 8 \sum \limits_{y_1= \lfloor \sqrt{\frac{x}{2}} \rfloor + 1 }^{\lfloor \sqrt{x} \rfloor} \lfloor \sqrt{x-y_1^2} \rfloor \qquad & | \quad x = r^2 = 5^2 \\\\ &=& 1 + 4\lfloor \sqrt{5^2} \rfloor + 4 \lfloor \sqrt{\frac{5^2}{2}} \rfloor ^2 + 8 \sum \limits_{y_1= \lfloor \sqrt{\frac{5^2}{2}} \rfloor + 1 }^{\lfloor \sqrt{5^2} \rfloor} \lfloor \sqrt{5^2-y_1^2} \rfloor \\\\ &=& 1 + 4 \cdot 5 + 4 \cdot 3 ^2 + 8 \sum \limits_{y_1= 3 + 1 }^{5} \lfloor \sqrt{5^2-y_1^2} \rfloor \\\\ &=& 1 + 4 \cdot 5 + 4 \cdot 3 ^2 + 8 \sum \limits_{y_1= 4 }^{5} \lfloor \sqrt{5^2-y_1^2} \rfloor \\\\ &=& 1 + 4 \cdot 5 + 4 \cdot 3 ^2 + 8 \cdot \left( \lfloor \sqrt{5^2-4^2} \rfloor +\lfloor \sqrt{5^2-5^2} \rfloor \right) \\\\ &=& 1 + 4 \cdot 5 + 4 \cdot 3 ^2 + 8 \cdot \left( 3 + 0 \right) \\\\ &=& 1 + 4 \cdot 5 + 4 \cdot 3 ^2 + 24 \\\\ &=& 1 + 20 + 36 + 24 \\ &\mathbf{=} & \mathbf{81} \\ \hline \end{array}\)

 

81 lattice points (points with integer coordinates) lie within or on this circle with radius 5.

 

Example:
\(r = 0 \ldots 20\)

 

Number of lattice points in circle:

\(\begin{array}{|r|r|r|} \hline r & \text{lattice points in circle} & \text{lattice points in sphere } \\ \hline 0 & 1 & 1 \\ 1 & 5 & 7 \\ 2 & 13 & 33 \\ 3 & 29 & 123 \\ 4 & 49 & 257 \\ {\color{red}5} & {\color{red}81} & 515 \\ 6 & 113 & 925 \\ 7 & 149 & 1419 \\ 8 & 197 & 2109 \\ 9 & 253 & 3071 \\ 10 & 317 & 4169 \\ 11 & 377 & 5575 \\ 12 & 441 & 7153 \\ 13 & 529 & 9171 \\ 14 & 613 & 11513 \\ 15 & 709 & 14147 \\ 16 & 797 & 17077 \\ 17 & 901 & 20479 \\ 18 & 1009 & 24405 \\ 19 & 1129 & 28671 \\ 20 & 1257 & 33401 \\ \hline \end{array} \)

 

laugh

 Jan 15, 2018

11 Online Users

avatar
avatar