Loading [MathJax]/jax/output/SVG/jax.js
 
+0  
 
0
1659
3
avatar

A circle of radius 5 with its center at (0,0) is drawn on a Cartesian coordinate system. How many lattice points (points with integer coordinates) lie within or on this circle?

 Jan 14, 2018

Best Answer 

 #2
avatar+130466 
+1

The total number of   lattice ponts is given by

 

1  +  (4 * 5)  + 

4 *  [  floor √[ 5^2  - 1^2]  +  floor √ [5^2  - 2^2]  + floor √[5^2  - 3^2] + floor √[5^2 - 4^2]  ]  =

 

1  + 20  +

4 *  [  floor √24  +  floor  √21  +  floor √16  +  floor √9 ]  =

 

21  + 4 [  4 + 4 + 4  + 3 ]  =

 

21  +  4 [ 15]  =

 

81

 

 

cool cool cool

 Jan 15, 2018
 #1
avatar+267 
0

Start with the 4 "poles" i.e (5,0), (0,5), (-5,0), (0,-5) 

 

Each quadrant of the circle has 2 integer values (3,4) and (4,3) - Since (3,4,5) is a pythagorean triple

 

 

 

4 quadrants give 8 more points so 12 points in total

 Jan 14, 2018
 #2
avatar+130466 
+1
Best Answer

The total number of   lattice ponts is given by

 

1  +  (4 * 5)  + 

4 *  [  floor √[ 5^2  - 1^2]  +  floor √ [5^2  - 2^2]  + floor √[5^2  - 3^2] + floor √[5^2 - 4^2]  ]  =

 

1  + 20  +

4 *  [  floor √24  +  floor  √21  +  floor √16  +  floor √9 ]  =

 

21  + 4 [  4 + 4 + 4  + 3 ]  =

 

21  +  4 [ 15]  =

 

81

 

 

cool cool cool

CPhill Jan 15, 2018
 #3
avatar+26396 
+1

A circle of radius 5 with its center at (0,0) is drawn on a Cartesian coordinate system.

How many lattice points (points with integer coordinates) lie within or on this circle?

 

A Calculation of the Number of Lattice Points within or on the circle:

 

Let x be the largest integer equal to or less than x.

 

Example:
3.53553390593=3
3.53553390593=4

 

 

 

Noted by Gauss:

Let r  radius of the circle = 5

Let x=r2

 

A2(x)=1+4x+4x22+8xy1=x2+1xy21|x=r2=52=1+452+45222+852y1=522+152y21=1+45+432+85y1=3+152y21=1+45+432+85y1=452y21=1+45+432+8(5242+5252)=1+45+432+8(3+0)=1+45+432+24=1+20+36+24=81

 

81 lattice points (points with integer coordinates) lie within or on this circle with radius 5.

 

Example:
r=020

 

Number of lattice points in circle:

rlattice points in circlelattice points in sphere 0111572133332912344925758151561139257149141981972109925330711031741691137755751244171531352991711461311513157091414716797170771790120479181009244051911292867120125733401

 

laugh

 Jan 15, 2018

2 Online Users