We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive pseudonymised information about your use of our website. cookie policy and privacy policy.
 
+0  
 
0
62
1
avatar

(a) Count the number of quadruples (a, b, c, d) of nonnegative integers such that 0 <= a < b < c < d <= 12.

(b) For this part, we want to count the number of quadruples (a, b, c, d) of nonnegative integers such that 0 <= a <= b <= c <= d <= 12.
Here, some of  a, b, c,  and d can be equal to each other, so the answer will be different from part (a). Each value a, b, c, d must be between 0 and 12 inclusive. One idea is to count how many times each number appears.

(c) In general, find the number of k-tuples (a1, a2, a3, . . ., ak) of nonnegative integers such that 0 <= a1 <= a2 <= a3 <= . . . <= ak <= n.

off-topic
 Nov 4, 2019
edited by Guest  Nov 4, 2019
edited by Guest  Nov 4, 2019
edited by Guest  Nov 4, 2019
 #1
avatar
+1

(a) We can choose four numbers from 1, 2, 3, ..., 12.  Then a is the lowest, b is the second-lowest, c is the third-lowest, and is the fourth-lowest, so the number of ways of choosing a,b,c,d is C(12,4) = 495.

 

(b) There are 12 ways of choosing a.  If a = 12, then there are 12 ways of choosing b.  If a = 11, then there are 11 ways of choosing b.  This pattern continues, so the number of ways of choosing b is 12 + 11 + 10 + ... + 1.

 

If b = 11, then there are 11 ways of choosing c.  If b = 10, then there are 10 ways of choosing c.  This pattern continues, so the number of ways of choosing c is 11 + 10 + 9 + ... + 1.

 

If c = 10, then there are 10 ways of choosing d.  If c = 9, then there are 9 ways of choosing d.  This pattern continues, so the number of ways of choosing d is 10 + 9 + 8 + ... + 1.

 

So the number of ways of choosing a,b,c,d is 12(12 + 11 + ... + 1)(11 + 10 + 9 + .. + 1)(10 + 9 + 8 + ... + 1) = 12*78*66*55 = 3397680.

 

(c) There are n ways of choosing a_1.  If a_1 = n, then there are n ways of choosing a_2.  If a_1 = n - 1, then there are n - 1 ways of choosing a_2.  This pattern continues, so the number of ways of choosing a_2 is n + (n - 1) + ... + 1 = n(n + 1)/2.

 

We can take the formula for part (b) and make it for n and k.  The number of ways of choosing a_1,a_2,...,a_k is n * n(n + 1)/2 * (n - 1)n/2 * ... * (n - k)(n - k + 1)/2.

 Nov 5, 2019

6 Online Users