+0  
 
0
771
2
avatar+1904 

Triangle \(ABC\) has \(AC=BC\), angle \(ACB=96°\).  \(D\) is a point in \(ABC\) such that angle \(DAB=18°\)and angle \(DBA=30°\).  What is the measure (in degrees) of angle \(ACD\)?  Please show how you got your answer.

 Jan 24, 2016

Best Answer 

 #1
avatar+33661 
+5

As follows:

 

angle

.

 Jan 24, 2016
 #1
avatar+33661 
+5
Best Answer

As follows:

 

angle

.

Alan Jan 24, 2016
 #2
avatar+129847 
+5

Let AC = BC  = 1

 

And if ACB = 96  Then CAB = CBA  = 42

 

But ADB is a triangle and DAB  =  18  and  DBA = 30.......so ADB = 132

 

And using the Law of Cosines

 

AB^2  = AC^2 + BC^2  - 2 (AC)(BC)cos(96)   .....so.....

 

AB^2  = 1^2 + 1^2  - 2(1)(1)cos(96)

 

AB = sqrt [2 - 2cos(96)]

 

And by the Law of Sines

 

AD / sin(30)  = AB/sin(132)

 

AD / (1/2)  = sqrt[2 - 2cos(96)] sin(132)

 

AD  = sqrt(2 - 2cos(96)] / [2 sin(132)]     

 

AD  = [sqrt(2) (sqrt(1 - cos(96))] / [2sin(132)]

 

AD = [sqrt(2)/2] * [sqrt(1 - cos(96)]/ [sin(132)]

 

AD = [1/sqrt(2)] * [sqrt(1 - cos(96)] / [sin(132)]

 

AD = [ sqrt(1 - cos(96)/ sqrt(2)] / [sin(132)]

 

AD  = sqrt [(1 - cos(96)/ 2]  / sin(132)     

 

And by a trig identity  sqrt [(1 - cos(96)/ 2]  = sin(48)

 

So

 

AD  =  sin(48)/sin(132) ......   but sin(48)  = sin(132)    .....therefore....

 

AD = 1

 

And angle CAB  =   angle DAB + angle DAC 

 

42  = 18  +  angle DAC    ...therefore

 

Angle DAC  = 42 - 18   = 24

 

So....in triangle CAD

 

AD = CA = 1

 

And angle DAC = 24

 

So......since AD = CA....the angles opposite those sides are also  equal

 

Therefore, angle ADC = angle ACD = [180 - 24]/2  = 156/2  = 78

 

Therefore....Angle ACD  = 78

 

 

 

cool cool cool

 Jan 24, 2016
edited by CPhill  Jan 24, 2016

2 Online Users

avatar