+0  
 
0
1119
1
avatar

(a) log4(3) = log5(x) How do I solve for x?

 Nov 4, 2014

Best Answer 

 #1
avatar+118724 
+5

How do I solve for x?

(a) log4(3) = log5(x) How do I solve for x?

 

Use the change of base law

 

 

 $$\\log_4(3) = log_5(x) \\\\
\dfrac{log_{10}3}{log_{10}4}=\dfrac{log_{10}x}{log_{10}5}\\\\
\dfrac{log_{10}3}{log_{10}4}\times{log_{10}5} =log_{10}x\\\\
10^{log_{10}x}=10^{\frac{log_{10}3}{log_{10}4}\times{log_{10}5}} \\\\
x=10^{\frac{log_{10}3}{log_{10}4}\times{log_{10}5}} \\\\$$

 

$${{\mathtt{10}}}^{\left({\frac{{log}_{10}\left({\mathtt{3}}\right)}{{log}_{10}\left({\mathtt{4}}\right)}}{\mathtt{\,\times\,}}{log}_{10}\left({\mathtt{5}}\right)\right)} = {\mathtt{3.580\: \!309\: \!929\: \!757\: \!902\: \!4}}$$

 Nov 5, 2014
 #1
avatar+118724 
+5
Best Answer

How do I solve for x?

(a) log4(3) = log5(x) How do I solve for x?

 

Use the change of base law

 

 

 $$\\log_4(3) = log_5(x) \\\\
\dfrac{log_{10}3}{log_{10}4}=\dfrac{log_{10}x}{log_{10}5}\\\\
\dfrac{log_{10}3}{log_{10}4}\times{log_{10}5} =log_{10}x\\\\
10^{log_{10}x}=10^{\frac{log_{10}3}{log_{10}4}\times{log_{10}5}} \\\\
x=10^{\frac{log_{10}3}{log_{10}4}\times{log_{10}5}} \\\\$$

 

$${{\mathtt{10}}}^{\left({\frac{{log}_{10}\left({\mathtt{3}}\right)}{{log}_{10}\left({\mathtt{4}}\right)}}{\mathtt{\,\times\,}}{log}_{10}\left({\mathtt{5}}\right)\right)} = {\mathtt{3.580\: \!309\: \!929\: \!757\: \!902\: \!4}}$$

Melody Nov 5, 2014

1 Online Users

avatar