+0  
 
0
1
3545
3
avatar

A person of height 2 meters is walking away from an 8 meter tall street light at a speed of .5 meters per second. At what rate is the person's shadow increasing in length??

 

No idea how to even begin blushsadindecision

 Mar 7, 2016

Best Answer 

 #2
avatar+2499 
+5

Thank you Melody ! :)

 Mar 13, 2016
 #1
avatar+118723 
+5

Hi Solveit and Guest.   :)

Solveit asked me to look at this question too :)  

Thanks Solveit, it is a good question  :)

 

A person of height 2 meters is walking away from an 8 meter tall street light at a speed of .5 meters per second. At what rate is the person's shadow increasing in length??

 

\(\frac{dx}{dt}=0.5 \qquad find \quad \frac{dy}{dt}\)

 

 

\(tan\theta = \frac{8}{x+y}=\frac{2}{y}\\ 8y=2x+2y\\ 6y=2x\\ y=\frac{x}{3}\\ \frac{dy}{dx}=\frac{1}{3} \)

 

\(\frac{dy}{dt}=\frac{dy}{dx}\times \frac{dx}{dt}\\ \frac{dy}{dt}=\frac{1}{3}\times0.5\\ \frac{dy}{dt}=\frac{1}{6} \\ \mbox{So the shadow increases at at the rate of } \;\frac{1}{6 }\;\;m/s\)

 Mar 13, 2016
 #2
avatar+2499 
+5
Best Answer

Thank you Melody ! :)

Solveit  Mar 13, 2016
 #3
avatar+118723 
+5

You are most welcome Solveit :)

 Mar 13, 2016

1 Online Users

avatar