+0

# A professional rower can paddle 320 miles upstream in 10 hours and downstream 320 miles in 5 hours. How fast is the current? (don't forget y

0
91
2

A professional rower can paddle 320 miles upstream in 10 hours and downstream 320 miles in 5 hours. How fast is the current? (don't forget your units)

Jan 21, 2020

#1
+1

Let  R  =  rate of the rower in still water.

Let  S  =  rate of the stream.

Downstream, the final rate is R + S.

Upstream, the final rate is R - S.

Using the formula  Distance  =  Rate x Time:

Downstream:  320  =  (R + S)(5)     --->     320  =  5R + 5S     --->     x2     --->     640  =  10R + 10S

Upstream:       320  =  (R - S)(10)    --->     320  =  10R - 10S

Combining the equations:     640  =  10R + 10S

320  =  10R - 10S

Adding down the columns:   960  =  20R     --->     R  =  960 / 20  =  48 mph

To Find S:  320  =  5R + 5S     --->     320  =  5(48) + 5S     --->     320  =  240 + 5S     --->     80  =  5S     --->     S  = 16 mph

Jan 21, 2020
#2
+1

320 / 10 = 32 mph - his speed upstream

320 / 5   = 64 mph - his speed downstream

[64 + 32] / 2 = 48 mph - hid speed in still water.

[64 - 32] / 2 = 16 mph - the speed of the current .

Jan 22, 2020