+0  
 
0
7
2606
1
avatar

A rectangular box with square base and open top is formed from two materials. The base material costs $5 per square foot, while the four sides cost $2 per square foot. If the volume of the box is 10 cubic feet, find the dimensions that minimize the cost. 

 May 4, 2016
 #1
avatar+130514 
0

V  = l * w * h     but since  the base is square  l = w   and we'll just call this  x

 

So

 

V = b * h

 

V = x^2 * h

 

10  = x^2 * h       and solving for h, we have that

 

h = 10/x^2

 

The  cost is given by :

 

Area of the base * cost of material per sq ft  +  Area  of the 4 sides * cost of material per sq ft 

 

So  we have

 

C   = x^2 (5)   +    4xh (2)       and substituting for h , we have

 

C = 5x^2   + 8x ( 10 / x^2)

 

C  = 5x^2  + 80x^-1        take the derivative of this and set it to 0

 

C'  = 10x  - 80x^-2   = 0      multiply both sides by x^2

 

10x^3  - 80   = 0     divide through by 10

 

x^3  - 8   = 0       add 8 to both sides

 

x^3  = 8  take the cube root of both sides

 

x = cube root (8) = 2 ft  ...... since the base is square, this is the length and the width

 

The height  = 10 / [cube root(8)]^2    =  10 / 4  ft  = 2.5 ft

 

And the minimum cost  =  5(2)^2  + 80/2   =  20 + 40   = $60

 

 

cool cool cool

 May 4, 2016

0 Online Users