+0

# A sequence

0
240
2

Please give 3 more terms of the following sequence and the formula or method used, if possible:

1, 2/3, 2/3, 4/5, 16/15, 32/21, 16/7.......etc.

Thank you for any help.

Guest Jul 26, 2017
Sort:

#1
+1

Please give 3 more terms of the following sequence and the formula or method used, if possible:

1, 2/3, 2/3, 4/5, 16/15, 32/21, 16/7.......etc.

Thank you for any help.

It is often difficult to see a pattern in such a sequence because the fractions have been reduced to their minimums. But a closer look shows that there is a simple pattern. The pattern follows this simple expression:

2^n / n(n+1), where n=term number. Since you already have 7 terms, then the next few terms will be:

2^8 / (8*9), 2^9 / (9*10), 2^10 / (10*11).....etc=256/72, 512/90, 1024/110.....etc., which when reduced, we get this: 32/9, 256/45,  512/55.......etc.

Guest Jul 26, 2017
#2
+18943
+1

Please give 3 more terms of the following sequence and the formula or method used, if possible:

1, 2/3, 2/3, 4/5, 16/15, 32/21, 16/7.......etc.

Recursive Sequence:

$$\begin{array}{|rcll|} \hline a_n &=& 2^n \cdot \frac{1}{n(n+1)} \\ a_{n+1} &=& 2^{n+1} \cdot \frac{1}{(n+1)(n+2)} \\\\ \frac{a_{n+1}} {a_n} &=& \frac{ 2^{n+1} \cdot \frac{1}{(n+1)(n+2)} } { 2^n \cdot \frac{1}{n(n+1)} } \\ \frac{a_{n+1}} {a_n} &=& 2^{n+1-n} \cdot \frac{n(n+1)} {(n+1)(n+2)} \\ \frac{a_{n+1}} {a_n} &=& 2 \cdot \frac{n} {(n+2)} \\ \frac{a_{n+1}} {a_n} &=& \frac{2n} {(n+2)} \\\\ \mathbf{ a_{n+1} }& \mathbf{=} & \mathbf{ a_n\cdot \frac{2n} {(n+2)} } \\ \hline \end{array}$$

$$\begin{array}{|rcll|} \hline a_7 &=& \frac{16}{7} \\\\ a_8 &=& \frac{16}{7} \cdot \frac{2\cdot 7} {(7+2)} \\ &=& \frac{16}{7} \cdot \frac{2\cdot 7} {9} \\ &=& \frac{16\cdot 2}{9} \\ & \mathbf{=} & \mathbf{ \frac{32}{9} } \\\\ a_9 &=& \frac{32}{9} \cdot \frac{2\cdot 8} {(8+2)} \\ &=& \frac{32}{9} \cdot \frac{16} {10} \\ &=& \frac{16\cdot 16}{9\cdot 5} \\ & \mathbf{=} & \mathbf{ \frac{256}{45} } \\\\ a_{10} &=& \frac{256}{45} \cdot \frac{2\cdot 9} {(9+2)} \\ &=& \frac{256}{5\cdot 9} \cdot \frac{2\cdot 9} {11} \\ &=& \frac{256\cdot 2}{5\cdot 11} \\ & \mathbf{=} & \mathbf{ \frac{512}{55} } \\ \hline \end{array}$$

heureka  Jul 27, 2017

### 27 Online Users

We use cookies to personalise content and ads, to provide social media features and to analyse our traffic. We also share information about your use of our site with our social media, advertising and analytics partners.  See details