Loading [MathJax]/jax/output/SVG/jax.js
 
+0  
 
0
3652
2
avatar

A square is inscribed in a right triangle, as shown below. The legs of the triangle are 2 and 3. Find the side length of the square.

 Mar 30, 2020
 #1
avatar+659 
+3

Hello Guest! Make an account! cheeky

Hypotenuse of big triangle: 13

 

This is just a compilation of a bunch of equations!

By Pythagorean Theorem:

(1) (2b)2+(3d)2=b2a2

(2) b2a2=d2c2

(3) d2c2=13ac

 

By similarity where s is the side length of the square:

(4)  ab=ds

(5) 23=2b3d

(6) 23=sc

(7) 23=as

 

General:

(8) a+c+s=13

 Mar 30, 2020
 #2
avatar+26396 
+4

A square is inscribed in a right triangle, as shown below.

The legs of the triangle are 2 and 3. 

Find the side length of the square.

 

 

Let A=(0, 0) Let B=(xb, yb)=(13, 0) Let C=(xc, yc)=(2cos(A), 2sin(A)) Let cos(A)=213, sin(A)=313 

 

tanφ=22+3tanφ=25line 1:y=tanφxy=25xline 2:yybxxb=ycybxcxbxb=13, yb=0,xc=413, yc=613yx13=61341313yx13=6413yx13=23y=23(x13)

 

The intersection point of both lines:

y=25x=23(x13)25x=23(x13)910x=(x13)910x=x+13x+910x=131910x=13x=101319y=s=35xs=35101319s=61913s=1.13859513962

 

The side length of the square is 61913=1.13859513962

 

laugh

 Mar 30, 2020

1 Online Users