A square is inscribed in a right triangle, as shown below. The legs of the triangle are 2 and 3. Find the side length of the square.
Hello Guest! Make an account!
Hypotenuse of big triangle: √13
This is just a compilation of a bunch of equations!
By Pythagorean Theorem:
(1) (2−b)2+(3−d)2=b2−a2
(2) b2−a2=d2−c2
(3) d2−c2=√13−a−c
By similarity where s is the side length of the square:
(4) ab=ds
(5) 23=2−b3−d
(6) 23=sc
(7) 23=as
General:
(8) a+c+s=√13
A square is inscribed in a right triangle, as shown below.
The legs of the triangle are 2 and 3.
Find the side length of the square.
Let A=(0, 0) Let B=(xb, yb)=(√13, 0) Let C=(xc, yc)=(2cos(A), 2sin(A)) Let cos(A)=2√13, sin(A)=3√13
tanφ=22+3tanφ=25line 1:y=tanφ∗xy=25∗xline 2:y−ybx−xb=yc−ybxc−xbxb=√13, yb=0,xc=4√13, yc=6√13yx−√13=6√134√13−√13yx−√13=64−13yx−√13=−23y=−23(x−√13)
The intersection point of both lines:
y=25∗x=−23(x−√13)25∗x=−23(x−√13)910∗x=−(x−√13)910∗x=−x+√13x+910∗x=√131910∗x=√13x=10√1319y=s=35xs=35∗10√1319s=619√13s=1.13859513962
The side length of the square is 619√13=1.13859513962