+0  
 
0
163
3
avatar

a - 3b   +    a + 5b

a + b          a + b

Guest Jan 11, 2018

Best Answer 

 #1
avatar+7266 
+1

\(\frac{a-3b}{a+b}\,+\,\frac{a+5b}{a+b}\)

                             These fractions have a common denominator so we can combine them.

\(=\,\frac{(a-3b)+(a+5b)}{a+b} \\~\\ =\,\frac{a-3b+a+5b}{a+b} \\~\\ =\,\frac{a+a+5b-3b}{a+b} \\~\\ =\,\frac{2a+2b}{a+b}\)

                             Let's factor a  2  out of the numerator.

\(=\,\frac{2(a+b)}{a+b}\)

                             Now we can reduce the fraction by  (a+b) .

\(=\,2\)                     This is true for all values of  a  and  b  as long as  a + b ≠ 0 .

hectictar  Jan 11, 2018
 #1
avatar+7266 
+1
Best Answer

\(\frac{a-3b}{a+b}\,+\,\frac{a+5b}{a+b}\)

                             These fractions have a common denominator so we can combine them.

\(=\,\frac{(a-3b)+(a+5b)}{a+b} \\~\\ =\,\frac{a-3b+a+5b}{a+b} \\~\\ =\,\frac{a+a+5b-3b}{a+b} \\~\\ =\,\frac{2a+2b}{a+b}\)

                             Let's factor a  2  out of the numerator.

\(=\,\frac{2(a+b)}{a+b}\)

                             Now we can reduce the fraction by  (a+b) .

\(=\,2\)                     This is true for all values of  a  and  b  as long as  a + b ≠ 0 .

hectictar  Jan 11, 2018
 #2
avatar
+1

Thank you!!! 

Guest Jan 11, 2018

29 Online Users

avatar

New Privacy Policy

We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive information about your use of our website.
For more information: our cookie policy and privacy policy.