We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive pseudonymised information about your use of our website. cookie policy and privacy policy.
 
+0  
 
0
209
1
avatar

Find the least common multiple of 9x^2-16 and 3x^2+x-4

 Apr 17, 2018

Best Answer 

 #1
avatar+100093 
+2

Find the least common multiple of 9x^2-16 and 3x^2+x-4

 

\(9x^2-16=(3x-4)(3x+4)\)

 

\(3x^2+x-4\\=3x^2+4x-3x-4\\=x(3x+4)-1(3x+4)\\=(x-1)(3x+4)\)

 

So the lowest common multiple is

  \((3x-4)(3x+4)(x-1)\\ =(9x^2-16)(x-1)\\ =9x^3-16x-9x^2+16\\ =9x^3-9x^2-16x+16\\ \)

.
 Apr 17, 2018
 #1
avatar+100093 
+2
Best Answer

Find the least common multiple of 9x^2-16 and 3x^2+x-4

 

\(9x^2-16=(3x-4)(3x+4)\)

 

\(3x^2+x-4\\=3x^2+4x-3x-4\\=x(3x+4)-1(3x+4)\\=(x-1)(3x+4)\)

 

So the lowest common multiple is

  \((3x-4)(3x+4)(x-1)\\ =(9x^2-16)(x-1)\\ =9x^3-16x-9x^2+16\\ =9x^3-9x^2-16x+16\\ \)

Melody Apr 17, 2018

14 Online Users

avatar
avatar
avatar