+0  
 
0
316
1
avatar

Find the least common multiple of 9x^2-16 and 3x^2+x-4

 Apr 17, 2018

Best Answer 

 #1
avatar+109520 
+2

Find the least common multiple of 9x^2-16 and 3x^2+x-4

 

\(9x^2-16=(3x-4)(3x+4)\)

 

\(3x^2+x-4\\=3x^2+4x-3x-4\\=x(3x+4)-1(3x+4)\\=(x-1)(3x+4)\)

 

So the lowest common multiple is

  \((3x-4)(3x+4)(x-1)\\ =(9x^2-16)(x-1)\\ =9x^3-16x-9x^2+16\\ =9x^3-9x^2-16x+16\\ \)

.
 Apr 17, 2018
 #1
avatar+109520 
+2
Best Answer

Find the least common multiple of 9x^2-16 and 3x^2+x-4

 

\(9x^2-16=(3x-4)(3x+4)\)

 

\(3x^2+x-4\\=3x^2+4x-3x-4\\=x(3x+4)-1(3x+4)\\=(x-1)(3x+4)\)

 

So the lowest common multiple is

  \((3x-4)(3x+4)(x-1)\\ =(9x^2-16)(x-1)\\ =9x^3-16x-9x^2+16\\ =9x^3-9x^2-16x+16\\ \)

Melody Apr 17, 2018

45 Online Users

avatar
avatar
avatar
avatar
avatar