+0  
 
0
66
1
avatar

Find the least common multiple of 9x^2-16 and 3x^2+x-4

Guest Apr 17, 2018

Best Answer 

 #1
avatar+92624 
+2

Find the least common multiple of 9x^2-16 and 3x^2+x-4

 

\(9x^2-16=(3x-4)(3x+4)\)

 

\(3x^2+x-4\\=3x^2+4x-3x-4\\=x(3x+4)-1(3x+4)\\=(x-1)(3x+4)\)

 

So the lowest common multiple is

  \((3x-4)(3x+4)(x-1)\\ =(9x^2-16)(x-1)\\ =9x^3-16x-9x^2+16\\ =9x^3-9x^2-16x+16\\ \)

Melody  Apr 17, 2018
 #1
avatar+92624 
+2
Best Answer

Find the least common multiple of 9x^2-16 and 3x^2+x-4

 

\(9x^2-16=(3x-4)(3x+4)\)

 

\(3x^2+x-4\\=3x^2+4x-3x-4\\=x(3x+4)-1(3x+4)\\=(x-1)(3x+4)\)

 

So the lowest common multiple is

  \((3x-4)(3x+4)(x-1)\\ =(9x^2-16)(x-1)\\ =9x^3-16x-9x^2+16\\ =9x^3-9x^2-16x+16\\ \)

Melody  Apr 17, 2018

11 Online Users

avatar

New Privacy Policy

We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive information about your use of our website.
For more information: our cookie policy and privacy policy.