+0  
 
0
37
1
avatar

Find the least common multiple of 9x^2-16 and 3x^2+x-4

 
Guest Apr 17, 2018

Best Answer 

 #1
avatar+92215 
+2

Find the least common multiple of 9x^2-16 and 3x^2+x-4

 

\(9x^2-16=(3x-4)(3x+4)\)

 

\(3x^2+x-4\\=3x^2+4x-3x-4\\=x(3x+4)-1(3x+4)\\=(x-1)(3x+4)\)

 

So the lowest common multiple is

  \((3x-4)(3x+4)(x-1)\\ =(9x^2-16)(x-1)\\ =9x^3-16x-9x^2+16\\ =9x^3-9x^2-16x+16\\ \)

 
Melody  Apr 17, 2018
Sort: 

1+0 Answers

 #1
avatar+92215 
+2
Best Answer

Find the least common multiple of 9x^2-16 and 3x^2+x-4

 

\(9x^2-16=(3x-4)(3x+4)\)

 

\(3x^2+x-4\\=3x^2+4x-3x-4\\=x(3x+4)-1(3x+4)\\=(x-1)(3x+4)\)

 

So the lowest common multiple is

  \((3x-4)(3x+4)(x-1)\\ =(9x^2-16)(x-1)\\ =9x^3-16x-9x^2+16\\ =9x^3-9x^2-16x+16\\ \)

 
Melody  Apr 17, 2018

28 Online Users

avatar
avatar
avatar
We use cookies to personalise content and ads, to provide social media features and to analyse our traffic. We also share information about your use of our site with our social media, advertising and analytics partners.  See details