+0  
 
0
62
4
avatar

Solve for X.

 

a/b(2x - 12) = c/d

Guest Aug 20, 2017
Sort: 

4+0 Answers

 #1
avatar+178 
+2

Input: Solve for X. a/b(2x - 12) = c/d

Intepretation: Solve for \(x\) in \(\frac{a}{b}(2x-12)=\frac{c}{d}\)

Solution:

Multiple both sides by \(bd\):

\(ad(2x-12)=bc\)

Expand:

\(2adx-12ad=bc\)

Move the numerical term to the right:

\(2adx=12ad+bc\)

Divide both sides by \(2\)
\(adx=6ad+\frac{bc}{2}\)

Finally, divide both sides by a factor of \(ad\):

\(x=6+\frac{bc}{2ad}\)

Done :)

Jeffes02  Aug 20, 2017
 #2
avatar+6897 
+2

Solve for X.
a/b(2x - 12) = c/d

1.                                            on both sides

\(\frac{a}{b}(2x - 12) = \frac{c}{d}\)                 [\(\times\frac{b}{a}\)

\(2x-12=\frac{bc}{ad}\)                      [+12       

\(2x=\frac{bc}{ad}+12\)                      [ / 2

\(x=\frac{bc}{2ad}+6\) 

 

2.

\(\frac{a}{b(2x-12)}=\frac{c}{d}\)                        [\(\times (2x-12)\) 

\(\frac{a}{b}=\frac{c}{d}(2x-12)\)                 [\(\times\frac{d}{c}\)

\(\frac{ad}{bc}=2x-12\)                      [+12

\(\frac{ad}{bc}+12=2x\)                      [ / 2

\(\frac{ad}{2bc}+6=x\)

\(x=\frac{ad}{2bx}+6\)

 

Both can be meant. Use brackets!

laugh  !

asinus  Aug 20, 2017
 #3
avatar+178 
+2

Good work of yours! It is really easily for people to confuse others with inappropiate use of brackets.

Jeffes02  Aug 20, 2017
 #4
avatar+6897 
+1

If I mean \(\frac{a}{b}(2x-12)=\frac{c}{d}\), I should write (a/b)*(2x - 12) = c/d.

If I mean \(\frac{a}{b(2x-12)}=\frac{c}{d}\), I should write a/(b(2x - 12)) = c/d.
This is not unreasonable.

a/b(2x - 12) = c/d  can mean both.

asinus  Aug 20, 2017

18 Online Users

avatar
avatar
avatar
We use cookies to personalise content and ads, to provide social media features and to analyse our traffic. We also share information about your use of our site with our social media, advertising and analytics partners.  See details