Input: Solve for X. a/b(2x - 12) = c/d
Intepretation: Solve for \(x\) in \(\frac{a}{b}(2x-12)=\frac{c}{d}\)
Solution:
Multiple both sides by \(bd\):
\(ad(2x-12)=bc\)
Expand:
\(2adx-12ad=bc\)
Move the numerical term to the right:
\(2adx=12ad+bc\)
Divide both sides by \(2\)
\(adx=6ad+\frac{bc}{2}\)
Finally, divide both sides by a factor of \(ad\):
\(x=6+\frac{bc}{2ad}\)
Done :)
Solve for X.
a/b(2x - 12) = c/d
1. on both sides
\(\frac{a}{b}(2x - 12) = \frac{c}{d}\) [\(\times\frac{b}{a}\)
\(2x-12=\frac{bc}{ad}\) [+12
\(2x=\frac{bc}{ad}+12\) [ / 2
\(x=\frac{bc}{2ad}+6\)
2.
\(\frac{a}{b(2x-12)}=\frac{c}{d}\) [\(\times (2x-12)\)
\(\frac{a}{b}=\frac{c}{d}(2x-12)\) [\(\times\frac{d}{c}\)
\(\frac{ad}{bc}=2x-12\) [+12
\(\frac{ad}{bc}+12=2x\) [ / 2
\(\frac{ad}{2bc}+6=x\)
\(x=\frac{ad}{2bx}+6\)
Both can be meant. Use brackets!
!