+0  
 
0
2072
4
avatar+709 

If the Hypotenuse of a 45-45-90 triangle is \(3\sqrt{2}\), what are the lengths of the other 2 sides? Please explain.

 Feb 8, 2016

Best Answer 

 #3
avatar+129899 
+10

In a 45-45-90  right triangle, the legs are  1/sqrt(2)  as long as the hypotenuse....

 

So.....the legs are  3sqrt(2) * (1 / sqrt(2))   =    3  units long

 

 

 

cool cool cool

 Feb 8, 2016
 #1
avatar+709 
0

I got 2.9999999... Please tell me if this is correct.

 Feb 8, 2016
 #2
avatar+5265 
+11

Both legs are equal to 3 because they are congruent and equal 3*(sqrt(2))/sqrt(2).

 

Reason: 45-45-90 Thrm.

 

Both legs are congruent, hypotenuse is leg*sqrt(2)

 Feb 8, 2016
edited by rarinstraw1195  Feb 8, 2016
 #3
avatar+129899 
+10
Best Answer

In a 45-45-90  right triangle, the legs are  1/sqrt(2)  as long as the hypotenuse....

 

So.....the legs are  3sqrt(2) * (1 / sqrt(2))   =    3  units long

 

 

 

cool cool cool

CPhill Feb 8, 2016
 #4
avatar+118687 
+10

 

If the Hypotenuse of a 45-45-90 triangle is 3root2 , what are the lengths of the other 2 sides? Please explain.

 

 

This is a standard 45-45-90 triangle. 

The sides must stay in the same proportion.

If you multiply the hypotenuse by 3 you can see it will be    \(3\sqrt2\;\;\;units\)

So you must multiply the other sides by 3 as well.   1*3=3

SO

the other sides will be 3

 

 

 Feb 9, 2016

0 Online Users