+0  
 
+1
438
2
avatar

What is the solution to the system of equations?

{ 2x+y-z=-3, 5x-2y+2z=24, 3x-z=5}?

 

Options: (4,1,8) (-1,0,-8) (2,-6,1) or (-5,4,-3) Sorry, I'm just really stuck on this one

 Sep 12, 2017
 #1
avatar
0

I figured it out, nvm. It is actually choice 3. Lol sorry

 Sep 12, 2017
 #2
avatar+21346 
0

What is the solution to the system of equations?

{ 2x+y-z=-3, 5x-2y+2z=24, 3x-z=5}?

 

Options: (4,1,8) (-1,0,-8) (2,-6,1) or (-5,4,-3)

 

\(\small{ \begin{array}{|lcl|} \hline x &=& \dfrac{ \begin{vmatrix} -3&1&-1 \\ 24&-2&2 \\ 5&0&-1 \\ \end{vmatrix} }{\begin{vmatrix} 2&1&-1 \\ 5&-2&2 \\ 3&0&-1 \\ \end{vmatrix} } \\\\ &=&\dfrac{ 5\cdot [1\cdot 2- (-2) \cdot (-1) ] -1 \cdot [(-3)\cdot (-2) - 24\cdot 1 ] } {3\cdot [1\cdot 2 - (-2) \cdot (-1)] -1 \cdot [(2\cdot (-2) - 5\cdot 1] } \\\\ &=&\dfrac{ 0 -1 \cdot (-18) } {0 -1 \cdot (-9) } \\\\ &=&\dfrac{ 18 } {9} \\\\ \mathbf{x} & \mathbf{=} & \mathbf{2}\\ \hline \end{array} }\)

 

\(\small{ \begin{array}{|lcl|} \hline z &=& \dfrac{ \begin{vmatrix} 2&1&-3 \\ 5&-2&24 \\ 3&0&5 \\ \end{vmatrix} }{\begin{vmatrix} 2&1&-1 \\ 5&-2&2 \\ 3&0&-1 \\ \end{vmatrix}} \\\\ &=&\dfrac{ 3\cdot [1\cdot 24- (-2) \cdot (-3) ] +5 \cdot [2\cdot (-2) - 5\cdot 1 ] } {9 } \\\\ &=&\dfrac{ 3\cdot 18 +5\cdot (-9) } {9} \\\\ &=&\dfrac{ 9 } {9} \\\\ \mathbf{z} & \mathbf{=} & \mathbf{1}\\ \hline \end{array} }\)

 

\(\begin{array}{|lcl|} \hline y &=& -3 + z - 2x \\ &=& -3 + 1 - 2\cdot 2 \\ &=& -3 + 1 - 4 \\ \mathbf{y} & \mathbf{=} & \mathbf{ -6}\\ \hline \end{array}\)

 

Result (2,-6,1)

 

laugh

 Sep 12, 2017

16 Online Users

avatar

New Privacy Policy

We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive information about your use of our website.
For more information: our cookie policy and privacy policy.