+0  
 
0
215
1
avatar

If k is constant, what is the value of k so that the polynomial \(k^2x^3-8kx+16\) is divisible by x-1?

 Apr 30, 2018

Best Answer 

 #1
avatar+20850 
+2

If k is constant, what is the value of k so that the polynomial

\(k^2x^3-8kx+16\) is divisible by \(x-1\)?

 

\(k^2x^3-8kx+16 = k^2(x-1)(\ldots )(\ldots) \)

The first root is 1.

 

\(\begin{array}{|rcll|} \hline k^2 \cdot 1^3 - 8k \cdot 1 + 16 &=& 0 \\ k^2 - 8k + 16 &=& 0 \\ k &=& \dfrac{ 8\pm \sqrt{64-4\cdot 16} }{2} \\ k &=& \dfrac{ 8\pm 0 }{2} \\ k &=& \dfrac{ 8\pm 0 }{2} \\ \mathbf{k} & \mathbf{=} & \mathbf{4} \\ \hline \end{array}\)

 

\(\begin{array}{|rcll|} \hline 16x^3-32x+16 : (x-1) = 16x^2+16x-16 \\ \hline \end{array}\)

 

 

laugh

 Apr 30, 2018
 #1
avatar+20850 
+2
Best Answer

If k is constant, what is the value of k so that the polynomial

\(k^2x^3-8kx+16\) is divisible by \(x-1\)?

 

\(k^2x^3-8kx+16 = k^2(x-1)(\ldots )(\ldots) \)

The first root is 1.

 

\(\begin{array}{|rcll|} \hline k^2 \cdot 1^3 - 8k \cdot 1 + 16 &=& 0 \\ k^2 - 8k + 16 &=& 0 \\ k &=& \dfrac{ 8\pm \sqrt{64-4\cdot 16} }{2} \\ k &=& \dfrac{ 8\pm 0 }{2} \\ k &=& \dfrac{ 8\pm 0 }{2} \\ \mathbf{k} & \mathbf{=} & \mathbf{4} \\ \hline \end{array}\)

 

\(\begin{array}{|rcll|} \hline 16x^3-32x+16 : (x-1) = 16x^2+16x-16 \\ \hline \end{array}\)

 

 

laugh

heureka Apr 30, 2018

38 Online Users

avatar

New Privacy Policy

We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive information about your use of our website.
For more information: our cookie policy and privacy policy.