We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive pseudonymised information about your use of our website. cookie policy and privacy policy.

+0

# Algebra 2

0
345
1

If k is constant, what is the value of k so that the polynomial $$k^2x^3-8kx+16$$ is divisible by x-1?

Apr 30, 2018

### Best Answer

#1
+22273
+2

If k is constant, what is the value of k so that the polynomial

$$k^2x^3-8kx+16$$ is divisible by $$x-1$$?

$$k^2x^3-8kx+16 = k^2(x-1)(\ldots )(\ldots)$$

The first root is 1.

$$\begin{array}{|rcll|} \hline k^2 \cdot 1^3 - 8k \cdot 1 + 16 &=& 0 \\ k^2 - 8k + 16 &=& 0 \\ k &=& \dfrac{ 8\pm \sqrt{64-4\cdot 16} }{2} \\ k &=& \dfrac{ 8\pm 0 }{2} \\ k &=& \dfrac{ 8\pm 0 }{2} \\ \mathbf{k} & \mathbf{=} & \mathbf{4} \\ \hline \end{array}$$

$$\begin{array}{|rcll|} \hline 16x^3-32x+16 : (x-1) = 16x^2+16x-16 \\ \hline \end{array}$$

Apr 30, 2018

### 1+0 Answers

#1
+22273
+2
Best Answer

If k is constant, what is the value of k so that the polynomial

$$k^2x^3-8kx+16$$ is divisible by $$x-1$$?

$$k^2x^3-8kx+16 = k^2(x-1)(\ldots )(\ldots)$$

The first root is 1.

$$\begin{array}{|rcll|} \hline k^2 \cdot 1^3 - 8k \cdot 1 + 16 &=& 0 \\ k^2 - 8k + 16 &=& 0 \\ k &=& \dfrac{ 8\pm \sqrt{64-4\cdot 16} }{2} \\ k &=& \dfrac{ 8\pm 0 }{2} \\ k &=& \dfrac{ 8\pm 0 }{2} \\ \mathbf{k} & \mathbf{=} & \mathbf{4} \\ \hline \end{array}$$

$$\begin{array}{|rcll|} \hline 16x^3-32x+16 : (x-1) = 16x^2+16x-16 \\ \hline \end{array}$$

heureka Apr 30, 2018