\(1. How/ many/ positive /integers /n/ satisfy/ \lfloor \sqrt{n} \rfloor = 5?\)
2.\(The/ function/ h(x)/ is/ defined /as: h(x) = \left\{ \begin{array}{cl} \lfloor 4x \rfloor & \text{if } x \le \pi, \\ 3-x & \text{if }\pi < x \le 5.2, \\ x^2& \text{if }5.2< x. \end{array}\right. Find/ h(h(\sqrt{2})).\)
3.\(Find /constants /A/ and /B /such /that \frac{x + 7}{x^2 - x - 2} = \frac{A}{x - 2} + \frac{B}{x + 1}\ for/ all/ x /such /that/ x\neq -1 and x\neq 2. Give /your/ answer/ as/ the/ ordered/ pair/ (A,B).\)4.\(The /function /f(x)/ is /defined /for/ 1 \le x \le 5 as follows: f(x) = \left\{ \begin{array}{cl} 2x + 1 & \text{if }1 \le x \le 2, \\ 7 - x & \text{if }2 < x \le 3, \\ 10 - 2x & \text{if }3 < x \le 4, \\ 10 - x & \text{if }4 < x \le 5. \end{array}\right. Find/ all /real /numbers /x/ such /that/ f(x) = x. If/ you/ find/ more/ than/ one /answer,/ list /them /all,/ separated /by /commas.\)