\(5.Find/ all/ values/ of/ t /such /that/ \lfloor t\rfloor = 2t + 3$. If/ you/ find /more/ than/ one /value,/ then/ list/ the /values/ you /find /in/ increasing /order,/ separated /by/ commas.\)
6.
\(Let $f(x) = \left\lfloor\dfrac{2 - 3x}{x + 5}\right\rfloor$. Evaluate f(1)+f(2) + f(3) + \cdots + f(999)+f(1000). (This/ sum /has /1000 terms,/ one /for/ the/ result/ when/ we /input/ each /integer/ from /1 /to/ 1000 /into/ f.)\)
7a.
\(Suppose/ that (|a - b| + |b - c| + |c - a| = 20.) What/ is/ the /maximum /possible/ value /of/ |a - b|?\)
7b.
\(Suppose /that/ \|a - b| + |b - c| + |c - d| + \dots + |m-n| + |n-o| + \cdots+ |x - y| + |y - z| + |z - a| = 20.\ What /is /the /maximum /possible /value /of |a - n|?\)
\(\)