+0  
 
0
48
1
avatar

Determine the horizontal asymptote for r(x) =x^3 - 2x^2 + 3/x - 2, if one exists.

 

A)There is no horizontal asymptote.

B)The horizontal asymptote is y = 0.

C)The horizontal asymptote is x = 2.

D)The horizontal asymptote is y = x - 1.

 

 

 Simplify.
 

x^2 + 5x - 14

__________

x^2 + 8x + 7

 

 

A) 7x/x

B) x - 2/x + 1

C) x - 2/x + 7

D) x + 7/x + 1

Guest Aug 16, 2017
Sort: 

1+0 Answers

 #1
avatar+76096 
+1

 

[x ^3 - 2x^2 + 3  ] / [ x -2 ]

 

Because the polynomial in the  numerator is of a greater degree than the polynomial in the denominator, there is no horizontal asymptote

 

 

x^2 + 5x - 14                                  [ ( x + 7) (x - 2) ]                         [ x - 2 ]

__________        factors as           _____________      =                ______    

x^2 + 8x + 7                                   [ (x + 7) ( x + 1) ]                        [ x + 1 ]    

 

 

 

 

 

cool cool cool         

CPhill  Aug 16, 2017

12 Online Users

avatar
avatar
avatar
We use cookies to personalise content and ads, to provide social media features and to analyse our traffic. We also share information about your use of our site with our social media, advertising and analytics partners.  See details