+0  
 
0
217
1
avatar

Determine the horizontal asymptote for r(x) =x^3 - 2x^2 + 3/x - 2, if one exists.

 

A)There is no horizontal asymptote.

B)The horizontal asymptote is y = 0.

C)The horizontal asymptote is x = 2.

D)The horizontal asymptote is y = x - 1.

 

 

 Simplify.
 

x^2 + 5x - 14

__________

x^2 + 8x + 7

 

 

A) 7x/x

B) x - 2/x + 1

C) x - 2/x + 7

D) x + 7/x + 1

Guest Aug 16, 2017
 #1
avatar+88839 
+1

 

[x ^3 - 2x^2 + 3  ] / [ x -2 ]

 

Because the polynomial in the  numerator is of a greater degree than the polynomial in the denominator, there is no horizontal asymptote

 

 

x^2 + 5x - 14                                  [ ( x + 7) (x - 2) ]                         [ x - 2 ]

__________        factors as           _____________      =                ______    

x^2 + 8x + 7                                   [ (x + 7) ( x + 1) ]                        [ x + 1 ]    

 

 

 

 

 

cool cool cool         

CPhill  Aug 16, 2017

30 Online Users

avatar
avatar

New Privacy Policy

We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive information about your use of our website.
For more information: our cookie policy and privacy policy.