Loading [MathJax]/jax/output/SVG/jax.js
 
+0  
 
+1
951
4
avatar+23 

1.LetA(t)=32t2+4t.FindA(2)A(1).

2.Thefunctionfsatisfiesf(x+1)=1xforallx1,x0.Findf(2).

3.Letf(x)=3x7x+1.(Find)(the)(domain)(of)(f).(Give)(your)(answer)(as)an(interval).

4.Letf(x)=3x7x+1.(Find)the(range)of(f).(Give)(your)(answer)(as)(an)interval.

5.Let$f(x)=23x52x.For)what)value)of)(a)is((f(a)=3?)

6.Letf(x)=3x24x.Find(the(constant(k(such(that)f(x)=f(kx)(for(all(real(numbers(x).

 

7.Let)(f)be)a)function)such)that)f(x+y)=x+f(y)for)any)two)real)numbers)(x)and)(y).Iff(0)=2,then)what)is)((f(2012)?

8.

Letf(x)=x2+4x31.For(what(value(of(a(is(there(exactly(one(real(value(of(x)such(thatf(x)=a?

9.Find/all/complex/numbers/z/such/that/z2=2i.Write/your/solutions/in/a+biform,separated/by/commas/.So/,"1+2i,3i"is/an/acceptable/answer/format/,but/"2i+1;i+3"/isnot./(Dont/include/quotes/in/youranswer.)Note:/This/problem/is/not/about/functions.

 Apr 12, 2018
 #1
avatar+73 
-3

Hey, CPhill can you go back to the problem about the advertising? I kinda did a mistake in the problem. I put the exponent of 3 instead of 2. Can you give me the right answer? Sorry!

 Apr 12, 2018
 #2
avatar+130466 
0

Here's a few :

 

1. 

A(2)  - A(1)  =

[ 3  - 2(2)^2 + 4^2 ]  - [ 3 - 2(1)^2 + 4^1]

[ 3 - 8 + 16]  -  [ 3 - 2 + 4]

[ 11 ]  - [ 5]

6

 

3.     [ 3x - 7]  / [ x + 1]

We can put any x into the function  except  x  =  -1

So....the domain is  (-infinity , -1) U (-1, infinity )

 

4. [ 3x - 7 ] / [ x + 1 ]

Since we have a same power polynomial/ same power polynomial  we will have a horizontal asymptote   at    [ 3x ] / x   =    3

So....the range  is   (-infinity , 3) U (3 , infinity )

 

 

5.  

 

3  =  [ 2 - 3a ]  /  [ 5 - 2a ]     multiply both sides by 5 - 2x

 

3 [ 5 - 2a]  = 2 - 3a

15 - 6a  = 2 - 3a      add 6a to both sides, subtract 2 from each side

13 = 3a  divide both sides by 

13/3  =   a

 

 

cool cool cool

 Apr 12, 2018
 #3
avatar+23 
0

Thanks a ton!!!

plzhelp  Apr 12, 2018
 #4
avatar+23 
0

1.The/function/f/satisfies/f(x+1)=1x/for/all/x1,x0.Findf(2).

2.Let/f(x)=3x24x.Find/the/constant/k/such/that/f(x)=f(kx)for/all/real/numbers/x.

3.Find/all/complex/numbers/z/such/that/z2=2i.Write/your/solutions/in/a+bi/form/,separated/by/commas./So,/"1+2i,3i"/is/an/acceptable/answer/format,/but/"2i+1;i+3"/is/not./(Dont/include/quotes/in/your/answer.)/Note:/This/problem/is/not/about/functions.

 

4.Let/f/be/a/function/such/that/f(x+y)=x+f(y)/for/any/two/real/numbers/x/and/y/.Iff(0)=2,then/what/is/f(2012)?

 Apr 12, 2018

1 Online Users

avatar