+0  
 
+1
47
6
avatar+15 

.\(The/ function /f/ satisfies/ f(\sqrt{x + 1}) = \frac{1}{x} /for/ all/x \ge -1, x\neq 0. Find f(2).\)

2.\(Let/ f(x) = 3x^2 - 4x. Find/ the/ constant/ k/ such/ that/ f(x) = f(k - x) for/ all/ real /numbers/ x.\)

3.\(Find/ all/ complex /numbers/ z/ such /that/ z^2 = 2i. Write /your /solutions/ in/ a+bi /form/, separated/ by/ commas./ So,/ "1+2i, 3-i" /is/ an/ acceptable/ answer/ format,/ but/ "2i+1; -i+3"/ is/ not./ (Don't/ include/ quotes/ in/ your/ answer.)/ Note: /This/ problem /is /not /about/ functions.\)

 

4.

\(Let/ f/ be /a /function/ such/ that/ f(x+y) = x + f(y) /for/ any/ two/ real/ numbers/ x/ and/ y/. If f(0) = 2, then/ what/ is/ f(2012)?\)

plzhelp  Apr 12, 2018

Best Answer 

 #1
avatar+6943 
+3

1.   The function  \(f\)  satisfies   \(f(\sqrt{x+1})=\frac1x\)   for all   \(x\geq-1\,,\quad x\neq0\) .   Find  \(f(2)\) .

 

We want to find an  x  value such that...

 

\(\sqrt{x+1}=2\\~\\ x+1=4\\~\\ x=3\)

 

So......

 

\(f(\sqrt{x+1})=\frac1x\\~\\ f(\sqrt{3+1})=\frac13\\~\\ f(\sqrt{4})=\frac13\\~\\ f(2)=\frac13\)

hectictar  Apr 12, 2018
edited by hectictar  Apr 12, 2018
Sort: 

6+0 Answers

 #1
avatar+6943 
+3
Best Answer

1.   The function  \(f\)  satisfies   \(f(\sqrt{x+1})=\frac1x\)   for all   \(x\geq-1\,,\quad x\neq0\) .   Find  \(f(2)\) .

 

We want to find an  x  value such that...

 

\(\sqrt{x+1}=2\\~\\ x+1=4\\~\\ x=3\)

 

So......

 

\(f(\sqrt{x+1})=\frac1x\\~\\ f(\sqrt{3+1})=\frac13\\~\\ f(\sqrt{4})=\frac13\\~\\ f(2)=\frac13\)

hectictar  Apr 12, 2018
edited by hectictar  Apr 12, 2018
 #2
avatar+6943 
+3

2.   Let   f(x)  =  3x2 - 4x  .  Find the constant  k  such that   f(x)  =  f(k - x)   for all real numbers  x .

 

f(x)   =   f(k - x)

                                                 And   f(x)  =  3x2 - 4x

3x2 - 4x   =   f(k - x)

                                                 And   f(k - x)  =  3(k - x)2 - 4(k - x)

3x2 - 4x   =   3(k - x)2 - 4(k - x)

 

3x2 - 3(k - x)2 - 4x + 4(k - x)   =   0

 

3[x2 - (k - x)2] - 4[x - (k - x)]   =   0

 

3[x + (k - x)][x - (k - x)] - 4[x - (k - x)]   =   0

 

3[x + k - x][x - k + x] - 4[x - k + x]   =   0

 

3[ k ][ 2x - k ] - 4[ 2x - k ]   =   0

 

( 2x - k )( 3k - 4 )   =   0

 

2x - k  =  0      or      3k - 4  =  0

 

k  =  2x                      k  =  4/3

 

The constant value that works is   k  =  4/3

hectictar  Apr 12, 2018
edited by hectictar  Apr 12, 2018
edited by hectictar  Apr 12, 2018
edited by hectictar  Apr 12, 2018
 #3
avatar+85741 
+1

Very nice, hectictar  !!!!

 

 

cool cool cool

CPhill  Apr 12, 2018
 #4
avatar+6943 
+2

Ah...thanks..but....my final answer happened to be right but my working out was all messed up!!  blush I had to fix it!!

hectictar  Apr 12, 2018
 #5
avatar+85741 
+1

I don't know....you're always pretty good with these function problems.....!!!

 

 

 

cool cool cool

CPhill  Apr 12, 2018
 #6
avatar+6943 
+2

4.   Let  f  be a function such that   f(x + y)  =  x + f(y)   for any two real numbers  x  and  y .

      If  f(0)  =  2  ,  then what is  f(2012)  ?

 

f(x + y)  =  x + f(y)

 

f( -2012 + 2012 )   =   -2012 + f(2012)

 

f(0)   =   -2012 + f(2012)

 

2   =   -2012 + f(2012)

 

2 + 2012   =   f(2012)

 

2014   =   f(2012)

hectictar  Apr 12, 2018

27 Online Users

avatar
avatar
avatar
avatar
We use cookies to personalise content and ads, to provide social media features and to analyse our traffic. We also share information about your use of our site with our social media, advertising and analytics partners.  See details