+0  
 
0
94
2
avatar+16 

Please explain clearly!

 

 

Part (a): Find the sum a + (a + 1) + (a + 2) + ... + (a + n - 1)
in terms of a and n.

Part (b): Find all pairs of positive integers (a,n) such that n>= 2 and 

 

a + (a + 1) + (a + 2) + ... + (a + n - 1) = 100

uu100  Mar 10, 2018
Sort: 

2+0 Answers

 #1
avatar+86528 
+2

Part (a): Find the sum a + (a + 1) + (a + 2) + ... + (a + n - 1)
in terms of a and n.

 

We can write  the above sum as

 

n*a  +  ( 1 + 2 + 3 + ....+ n - 1 )  =

 

n*a   +   (n - 1) (n)/2  =

 

n [ a +  ( n - 1) / 2 ]   =

 

n [ 2a + n - 1] / 2  =

 

(n/2)  [ 2a + n - 1 ]

 

 

cool cool cool

CPhill  Mar 10, 2018
 #2
avatar
0

b)

 

a=9    and   n=8

a =18 and   n=5

Guest Mar 10, 2018

21 Online Users

New Privacy Policy (May 2018)
We use cookies to personalise content and ads, to provide social media features and to analyse our traffic. We also share information about your use of our site with our social media, advertising and analytics partners.  Privacy Policy