+0  
 
0
268
2
avatar+16 

Please explain clearly!

 

 

Part (a): Find the sum a + (a + 1) + (a + 2) + ... + (a + n - 1)
in terms of a and n.

Part (b): Find all pairs of positive integers (a,n) such that n>= 2 and 

 

a + (a + 1) + (a + 2) + ... + (a + n - 1) = 100

 Mar 10, 2018
 #1
avatar+94619 
+2

Part (a): Find the sum a + (a + 1) + (a + 2) + ... + (a + n - 1)
in terms of a and n.

 

We can write  the above sum as

 

n*a  +  ( 1 + 2 + 3 + ....+ n - 1 )  =

 

n*a   +   (n - 1) (n)/2  =

 

n [ a +  ( n - 1) / 2 ]   =

 

n [ 2a + n - 1] / 2  =

 

(n/2)  [ 2a + n - 1 ]

 

 

cool cool cool

 Mar 10, 2018
 #2
avatar
0

b)

 

a=9    and   n=8

a =18 and   n=5

 Mar 10, 2018

13 Online Users

New Privacy Policy

We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive information about your use of our website.
For more information: our cookie policy and privacy policy.