\What is the simplified form of the quantity 1 over b minus 1 over a all over the quantity 1 over b plus 1 over a?
\What is the simplified form of the quantity 1 over b minus 1 over a all over the quantity 1 over b plus 1 over a?
(1/b - 1/a) / (1/b + 1/a)
Simplify the following:
(1/b-1/a)/(1/b+1/a)
Put each term in 1/b+1/a over the common denominator a b: 1/b+1/a = a/(a b)+b/(a b):
(1/b-1/a)/(a/(a b)+b/(a b))
a/(a b)+b/(a b) = (a+b)/(a b):
(1/b-1/a)/((a+b)/(a b))
Put each term in 1/b-1/a over the common denominator a b: 1/b-1/a = a/(a b)-(b)/(a b):
(a/(a b)-b/(a b))/((a+b)/(a b))
a/(a b)-b/(a b) = (a-b)/(a b):
((a-b)/(a b))/((a+b)/(a b))
Multiply the numerator by the reciprocal of the denominator, (a-b)/(a b (a+b)/(a b)) = (a-b)/(a b)×(a b)/(a+b):
(a b (a-b))/(a b (a+b))
((a-b) a b)/(a b (a+b)) = (a b)/(a b)×(a-b)/(a+b) = (a-b)/(a+b):
Answer: | (a-b) / (a+b)
\What is the simplified form of the quantity 1 over b minus 1 over a all over the quantity 1 over b plus 1 over a?
(1/b - 1/a) / (1/b + 1/a)
Simplify the following:
(1/b-1/a)/(1/b+1/a)
Put each term in 1/b+1/a over the common denominator a b: 1/b+1/a = a/(a b)+b/(a b):
(1/b-1/a)/(a/(a b)+b/(a b))
a/(a b)+b/(a b) = (a+b)/(a b):
(1/b-1/a)/((a+b)/(a b))
Put each term in 1/b-1/a over the common denominator a b: 1/b-1/a = a/(a b)-(b)/(a b):
(a/(a b)-b/(a b))/((a+b)/(a b))
a/(a b)-b/(a b) = (a-b)/(a b):
((a-b)/(a b))/((a+b)/(a b))
Multiply the numerator by the reciprocal of the denominator, (a-b)/(a b (a+b)/(a b)) = (a-b)/(a b)×(a b)/(a+b):
(a b (a-b))/(a b (a+b))
((a-b) a b)/(a b (a+b)) = (a b)/(a b)×(a-b)/(a+b) = (a-b)/(a+b):
Answer: | (a-b) / (a+b)