+0  
 
-1
173
2
avatar

Positive real numbers r, s satisfy the equations r^2+s^2 = 1 and r^4 + s^4 = 7/8. Find rs.

 

Thanks.

 Apr 4, 2018
 #1
avatar+94550 
+1

r^2  + s^2  =  1

r^4  + s^4  = 7/8

 

s^2  =  1  - r^2

s^4  = (1-r^2)^2   =  r^4 - 2r^2  + 1

 

So

 

r^4  +  s^4  = 1

r^4  + r^4 - 2r^2  + 1  = 7/8

2r^4 - 2r^2  + 1/8  = 0            divide through by 2

 

r^4 - r^2 + 1/16  = 0

r^4 - r^2  = - 1/16      complete the square on r

r^4  - r^2  +1/4  =  -1/16  + 1/4

(r^2 -1/2)^2  =  3/16         take the positive root of both sides

r^2  - 1/2  = √3/4

r^2  =  √3/4  + 1/2

r^2  = [ 2 + √3] / 4      take the positive root

r  =√[ 2 + √3 ] / 2

 

So.....

s^2  = 1  - r^2

s^2   =  1  - [ 2 + √3] / 4

s^2  = [ 4 - 2 - √3] / 4

s^2  = [ 2 - √3 ] / 4

s  = √[ 2 - √3 ] / 2

 

So  rs √[ 2 + √3 ] / 2  √[ 2 - √3 ] / 2   =   √ [ (2 + √3) (2 - √3) ]  / 4  = √ [ 4 - 3]  / 4  =   1/4

 

 

cool cool cool

 Apr 4, 2018
 #2
avatar+20848 
0

Positive real numbers r, s satisfy the equations

r^2+s^2 = 1 and

r^4 + s^4 = 7/8.

Find rs.

 

\(\begin{array}{|rcll|} \hline (r^2+s^2)^2 &=& r^4+2r^2s^2+s^4 \\ (r^2+s^2)^2 &=& r^4+s^4+2r^2s^2 \\ 2r^2s^2 &=& (r^2+s^2)^2-(r^4+s^4) \quad & | \quad r^2+s^2 = 1 \qquad r^4 + s^4 = \dfrac{7}{8} \\ 2r^2s^2 &=& 1^2-\dfrac{7}{8} \\ 2r^2s^2 &=& \dfrac{1}{8} \\ r^2s^2 &=& \dfrac{1}{16} \\ \mathbf{rs} &\mathbf{=}& \mathbf{\dfrac{1}{4}} \\ \hline \end{array}\)

 

laugh

 Apr 5, 2018

21 Online Users

avatar
avatar
avatar

New Privacy Policy

We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive information about your use of our website.
For more information: our cookie policy and privacy policy.