+0  
 
-1
107
2
avatar

Positive real numbers r, s satisfy the equations r^2+s^2 = 1 and r^4 + s^4 = 7/8. Find rs.

 

Thanks.

Guest Apr 4, 2018
 #1
avatar+88962 
+1

r^2  + s^2  =  1

r^4  + s^4  = 7/8

 

s^2  =  1  - r^2

s^4  = (1-r^2)^2   =  r^4 - 2r^2  + 1

 

So

 

r^4  +  s^4  = 1

r^4  + r^4 - 2r^2  + 1  = 7/8

2r^4 - 2r^2  + 1/8  = 0            divide through by 2

 

r^4 - r^2 + 1/16  = 0

r^4 - r^2  = - 1/16      complete the square on r

r^4  - r^2  +1/4  =  -1/16  + 1/4

(r^2 -1/2)^2  =  3/16         take the positive root of both sides

r^2  - 1/2  = √3/4

r^2  =  √3/4  + 1/2

r^2  = [ 2 + √3] / 4      take the positive root

r  =√[ 2 + √3 ] / 2

 

So.....

s^2  = 1  - r^2

s^2   =  1  - [ 2 + √3] / 4

s^2  = [ 4 - 2 - √3] / 4

s^2  = [ 2 - √3 ] / 4

s  = √[ 2 - √3 ] / 2

 

So  rs √[ 2 + √3 ] / 2  √[ 2 - √3 ] / 2   =   √ [ (2 + √3) (2 - √3) ]  / 4  = √ [ 4 - 3]  / 4  =   1/4

 

 

cool cool cool

CPhill  Apr 4, 2018
 #2
avatar+20013 
0

Positive real numbers r, s satisfy the equations

r^2+s^2 = 1 and

r^4 + s^4 = 7/8.

Find rs.

 

\(\begin{array}{|rcll|} \hline (r^2+s^2)^2 &=& r^4+2r^2s^2+s^4 \\ (r^2+s^2)^2 &=& r^4+s^4+2r^2s^2 \\ 2r^2s^2 &=& (r^2+s^2)^2-(r^4+s^4) \quad & | \quad r^2+s^2 = 1 \qquad r^4 + s^4 = \dfrac{7}{8} \\ 2r^2s^2 &=& 1^2-\dfrac{7}{8} \\ 2r^2s^2 &=& \dfrac{1}{8} \\ r^2s^2 &=& \dfrac{1}{16} \\ \mathbf{rs} &\mathbf{=}& \mathbf{\dfrac{1}{4}} \\ \hline \end{array}\)

 

laugh

heureka  Apr 5, 2018

37 Online Users

avatar
avatar

New Privacy Policy

We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive information about your use of our website.
For more information: our cookie policy and privacy policy.