+0  
 
-1
31
2
avatar

Positive real numbers r, s satisfy the equations r^2+s^2 = 1 and r^4 + s^4 = 7/8. Find rs.

 

Thanks.

Guest Apr 4, 2018
Sort: 

2+0 Answers

 #1
avatar+85958 
+1

r^2  + s^2  =  1

r^4  + s^4  = 7/8

 

s^2  =  1  - r^2

s^4  = (1-r^2)^2   =  r^4 - 2r^2  + 1

 

So

 

r^4  +  s^4  = 1

r^4  + r^4 - 2r^2  + 1  = 7/8

2r^4 - 2r^2  + 1/8  = 0            divide through by 2

 

r^4 - r^2 + 1/16  = 0

r^4 - r^2  = - 1/16      complete the square on r

r^4  - r^2  +1/4  =  -1/16  + 1/4

(r^2 -1/2)^2  =  3/16         take the positive root of both sides

r^2  - 1/2  = √3/4

r^2  =  √3/4  + 1/2

r^2  = [ 2 + √3] / 4      take the positive root

r  =√[ 2 + √3 ] / 2

 

So.....

s^2  = 1  - r^2

s^2   =  1  - [ 2 + √3] / 4

s^2  = [ 4 - 2 - √3] / 4

s^2  = [ 2 - √3 ] / 4

s  = √[ 2 - √3 ] / 2

 

So  rs √[ 2 + √3 ] / 2  √[ 2 - √3 ] / 2   =   √ [ (2 + √3) (2 - √3) ]  / 4  = √ [ 4 - 3]  / 4  =   1/4

 

 

cool cool cool

CPhill  Apr 4, 2018
 #2
avatar+19207 
0

Positive real numbers r, s satisfy the equations

r^2+s^2 = 1 and

r^4 + s^4 = 7/8.

Find rs.

 

\(\begin{array}{|rcll|} \hline (r^2+s^2)^2 &=& r^4+2r^2s^2+s^4 \\ (r^2+s^2)^2 &=& r^4+s^4+2r^2s^2 \\ 2r^2s^2 &=& (r^2+s^2)^2-(r^4+s^4) \quad & | \quad r^2+s^2 = 1 \qquad r^4 + s^4 = \dfrac{7}{8} \\ 2r^2s^2 &=& 1^2-\dfrac{7}{8} \\ 2r^2s^2 &=& \dfrac{1}{8} \\ r^2s^2 &=& \dfrac{1}{16} \\ \mathbf{rs} &\mathbf{=}& \mathbf{\dfrac{1}{4}} \\ \hline \end{array}\)

 

laugh

heureka  Apr 5, 2018

26 Online Users

avatar
avatar
We use cookies to personalise content and ads, to provide social media features and to analyse our traffic. We also share information about your use of our site with our social media, advertising and analytics partners.  See details