We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive pseudonymised information about your use of our website. cookie policy and privacy policy.
 
+0  
 
+1
404
1
avatar+606 

Let $F,$ $G,$ and $H$ be collinear points on the Cartesian plane such that $\frac{FG}{GH} = 1.$ If $F = (a, b)$ and $H = (7a, c)$, then what is the x-coordinate of $G$?

 Apr 13, 2018
 #1
avatar+21978 
+4

Let $F,$ $G,$ and $H$ be collinear points on the Cartesian plane such that $\frac{FG}{GH} = 1.$

If $F = (a, b)$ and $H = (7a, c)$, then what is the x-coordinate of $G$?

 

 

\(\begin{array}{|rcll|} \hline \mathbf{\vec{G}} &\mathbf{=}& \mathbf{(1-\lambda)\vec{F} + \lambda \vec{H}} \\\\ \dfrac{1-\lambda}{\lambda} &=& 1 \\ 1-\lambda &=& \lambda \\ 2\lambda &=& 1 \\ \lambda &=& \dfrac{1}{2}\\\\ \vec{G} &=& \left(1-\dfrac{1}{2}\right)\dbinom{a}{b} + \dfrac{1}{2} \dbinom{7a}{c} \\\\ &=& \dfrac{1}{2} \dbinom{a}{b} + \dfrac{1}{2} \dbinom{7a}{c} \\\\ &=& \dfrac{1}{2} \left( \dbinom{a}{b} + \dbinom{7a}{c} \right) \\\\ &=& \dfrac{1}{2} \dbinom{8a}{b+c} \\\\ &=&\displaystyle \dbinom{4a}{\frac{b+c}{2}} \\\\ \hline \end{array}\)

 

\(\text{The x-coordinate of $G$ is $4a$}\)

 

laugh

 Apr 13, 2018

18 Online Users

avatar
avatar