+0  
 
+1
37
1
avatar+476 

Let $F,$ $G,$ and $H$ be collinear points on the Cartesian plane such that $\frac{FG}{GH} = 1.$ If $F = (a, b)$ and $H = (7a, c)$, then what is the x-coordinate of $G$?

gueesstt  Apr 13, 2018
Sort: 

1+0 Answers

 #1
avatar+19207 
+4

Let $F,$ $G,$ and $H$ be collinear points on the Cartesian plane such that $\frac{FG}{GH} = 1.$

If $F = (a, b)$ and $H = (7a, c)$, then what is the x-coordinate of $G$?

 

 

\(\begin{array}{|rcll|} \hline \mathbf{\vec{G}} &\mathbf{=}& \mathbf{(1-\lambda)\vec{F} + \lambda \vec{H}} \\\\ \dfrac{1-\lambda}{\lambda} &=& 1 \\ 1-\lambda &=& \lambda \\ 2\lambda &=& 1 \\ \lambda &=& \dfrac{1}{2}\\\\ \vec{G} &=& \left(1-\dfrac{1}{2}\right)\dbinom{a}{b} + \dfrac{1}{2} \dbinom{7a}{c} \\\\ &=& \dfrac{1}{2} \dbinom{a}{b} + \dfrac{1}{2} \dbinom{7a}{c} \\\\ &=& \dfrac{1}{2} \left( \dbinom{a}{b} + \dbinom{7a}{c} \right) \\\\ &=& \dfrac{1}{2} \dbinom{8a}{b+c} \\\\ &=&\displaystyle \dbinom{4a}{\frac{b+c}{2}} \\\\ \hline \end{array}\)

 

\(\text{The x-coordinate of $G$ is $4a$}\)

 

laugh

heureka  Apr 13, 2018

27 Online Users

avatar
avatar
avatar
We use cookies to personalise content and ads, to provide social media features and to analyse our traffic. We also share information about your use of our site with our social media, advertising and analytics partners.  See details