+0  
 
0
132
3
avatar+162 

For $(x,y)$, positive integers, let $10xy+14x+15y=166$. Find $x+y$.

Creeperhissboom  Apr 22, 2018
 #1
avatar+88871 
+2

10xy + 14x + 15y  = 166     simplify as 

 

5y ( 2x + 3)  =  166 - 14x

 

Since the left side is divisible by 5, then so is the right side

 

When  x  =  4

 

5y (2*4 + 3)  =  166 - 14 * 4

 

5y (11)  =  166 - 56

 

55y  = 110

 

y  =  2

 

So  x  + y  =   4 + 2  =  6

 

 

 

cool cool cool

CPhill  Apr 22, 2018
 #2
avatar+942 
+2

Never seen a problem like this before.

 

Well done!

GYanggg  Apr 22, 2018
 #3
avatar+162 
+1

THANKS CPHILL :DDDD

Creeperhissboom  Apr 22, 2018

10 Online Users

New Privacy Policy

We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive information about your use of our website.
For more information: our cookie policy and privacy policy.