+0  
 
0
45
3
avatar+154 

For $(x,y)$, positive integers, let $10xy+14x+15y=166$. Find $x+y$.

Creeperhissboom  Apr 22, 2018
Sort: 

3+0 Answers

 #1
avatar+86613 
+2

10xy + 14x + 15y  = 166     simplify as 

 

5y ( 2x + 3)  =  166 - 14x

 

Since the left side is divisible by 5, then so is the right side

 

When  x  =  4

 

5y (2*4 + 3)  =  166 - 14 * 4

 

5y (11)  =  166 - 56

 

55y  = 110

 

y  =  2

 

So  x  + y  =   4 + 2  =  6

 

 

 

cool cool cool

CPhill  Apr 22, 2018
 #2
avatar+646 
+2

Never seen a problem like this before.

 

Well done!

GYanggg  Apr 22, 2018
 #3
avatar+154 
+1

THANKS CPHILL :DDDD

Creeperhissboom  Apr 22, 2018

27 Online Users

avatar
avatar
New Privacy Policy (May 2018)
We use cookies to personalise content and ads, to provide social media features and to analyse our traffic. We also share information about your use of our site with our social media, advertising and analytics partners.  Privacy Policy