+0  
 
0
4
1
avatar+1560 

The quadratic equation $x^2-mx+24 = 10$ has roots $x_1$ and $x_2$. If $x_1$ and $x_2$ are integers, how many different values of $m$ are possible?

 Dec 1, 2024
 #1
avatar+1299 
0

 

The quadratic equation $x^2-mx+24 = 10$ has roots $x_1$ and $x_2$. If $x_1$ and $x_2$ are integers, how many different values of $m$ are possible?    

 

x2 – mx + 24  =  10    

x2 – mx + 14  =  0    

 

the quadratic factors to  (x – 1)(x – 14)    —>>   x2  – 15x + 14    

                                  or  (x – 2)(x – 7)      —>>   x2 – 9x + 14    

 

so, m could be 15 or 9     two possibilities    

.    

 Dec 2, 2024

1 Online Users