Calculate the sum of the geometric series $1+\left(\frac{1}{8}\right)+\left(\frac{1}{8}\right)^2 + \left(\frac{1}{8}\right)^3 + \dots$. Express your answer as a common fraction.
\(1+\left(\frac{1}{8}\right)+\left(\frac{1}{8}\right)^2 + \left(\frac{1}{8}\right)^3 + \dots = \displaystyle\sum_{n=1}^{\infty} 8^{1-n} = \frac{8}{7}\)