1. Simplify
x^2+4x+3
--------------
2x-1
--------------
x^2+x
------------
2x^2-3x+1
2.
4(x+6) (x+10)
--------- x ----------
(x-2) 24(x+6)
thank you.
1. \(x^2+4x+3 = (x+1)(x+3) \)
2. Cannot be simplified further
3. \(x^2 + x = x(x+1) \)
4. \(2x^2-3x+1 = \left(2x-1\right)\left(x-1\right)\)
5. \(\frac{4\left(x+6\right)}{x-2}\cdot \frac{x+10}{24\left(x+6\right)} = \frac{x+10}{6\left(x-2\right)}\)
Hope this helped!
AnxiousLlama
THX, AnxiousLlama !!!
I think that the first one isn't 4 separate problems.....I think it's supposed to be
(x^2 + 4x + 3) / (2x - 1)
____________________
(x^2 + x) / (2x^2 - 3x + 1)
This can be expressed as
(x^2 + 4x + 3) (2x^2 - 3x + 1)
___________ x ______________ factor where possible
(2x - 1) ( x^2 + x )
(x + 3) ( x + 1) (2x - 1) ( x - 1)
___________ x _____________ "cancelling" we get
2x - 1 x ( x + 1)
(x + 3) ( x - 1) x^2 + 2x - 3
_____________ = ___________
x x