+0  
 
0
1
1
avatar+1577 

Let
a + ar + ar^2 + ar^3 + \dotsb
be an infinite geometric series.  The sum of the series is 3.  The sum of the squares of all the terms is 10. Find the common ratio.

 Dec 27, 2024
 #1
avatar+130081 
+1

a / ( 1-r)  = 3

 

a^2 / (1 - r^2) = 10  

 [ a / (1-r) ] * [ a/ (1+ r)  ]  =10

[ 3] * [ a / ( 1 + r) ] =10

a/ [ (1+ r)] =10/3

a = (10/3)(1 + r)

 

So

 

(10/3)(1 + r) / (1-r)  = 3

 

(10/3) (1+r) = 4 (1 - r)

 

10/3 + (10/3)r = 4 -4r

 

(10/3 + 4)r = 4 -10/3

 

r =  [ 4 - 10/3 ]/ [ 4 + 10/3] =  [ 2] / [ 22]  =  1 / 11

 

cool cool cool

 Dec 28, 2024

1 Online Users