+0  
 
0
1
1
avatar+178 

Let $x$ and $y$ be real numbers such that $x^2 + y^2 = 4x + 12y.$ Find the largest possible value of $x + y.$ Give your answer in exact form using radicals, simplified as far as possible.

 
 Jan 10, 2025
 #1
avatar+1314 
+1

 

x2 + y2  =  4x + 12y is the equation of a circle.  

 

My approach will be to complete the squares     

of x and y, to obtain the radius of that circle.  

 

x2 + y2  =  4x + 12y

 

(x2 – 4x) + (y2 – 12y)  =  0    

 

(x2 – 4x + 4) + (y2 – 12y + 36)  =  4 + 36    

 

(x – 2)2 + (y – 6)2  =  40    

 

This draws a circle centered at (2, 6) with a radius sqrt(40).    

 

Never mind the center, all that interests us is the radius.    

 

By formula, the maximum x+y is the radius times sqrt(2).    

 

In this problem, the largest x+y is sqrt(40) times sqrt(2).    

 

sqrt(40) • sqrt(2)  =  sqrt(80)  =  4 sqrt(5)    

.    

 Jan 10, 2025

1 Online Users