+0  
 
0
12
2
avatar+859 

The system of equations
\frac{xy}{x + y} = 1, \quad \frac{xz}{x + z} = 1, \quad \frac{yz}{y + z} = 2
has exactly one solution. What is $z$ in this solution?

 Jul 18, 2024
 #1
avatar+1926 
+1

I'm sorry, I used symbolab. 

symoblab.com

 

The answer is \(x=\frac{4}{3},\:z=4,\:y=4\)

 Jul 18, 2024
edited by NotThatSmart  Jul 18, 2024
 #2
avatar+129881 
+1

Rewrite as rhe second and third equations

 

xz = x + z →  xz - x = z →  x(z -1) = z  →   x = z / (z -1)

 

yz = 2 (y+ z) → yz = 2y + 2z  →  yz - 2y = 2z →  y ( z -2)  = 2z →  y = (2z) / (z -2)

 

Rewrite the first equation. sub for x and y

 

[ z / ( z -1)]   [(2z) / (z -2)] =   z/ (z -1) + (2z) / ( z -2)

 

2z^2  =   z (z -2) + 2z (z -1)

 

2z^2 = 3z^2 - 4z

 

z^2 - 4z  = 0

 

z ( z - 4)  = 0

 

z = 0  (reject because it makes the second equation false )

 

z = 4

 

cool cool cool

 Jul 18, 2024

3 Online Users

avatar