+0  
 
0
2
1
avatar+286 

Square ABCD has side length 6. An ellipse $\mathcal{E}$ is circumscribed about the square and there is a point $P$ on the ellipse such that $PC = PD = 8$. What is the area of ellipse $\mathcal{E}$? (You may assume the sides of the square are parallel to the axes of the ellipse.)

 Feb 20, 2025
 #1
avatar+130462 
+1

Let A  =(-3,3)  B =  (3,3)   C  =(3,-3)  D = (-3,-3)

 

Let  the  center of  the ellipse = (0,0) ....let  one of the axis lie along x....such that (a,0)    = P 

The equation of the ellipse is x^2/a^2 + y^2/b^2  =1

Constructing circles at  (3,3)  and (3,-3)  both with radii = 8   we have the equations

 

(x - 3)^2  + ( y -3)*2   =8^2

(x -3)^2 + (y +3)^2  = 8^2

Let y = 0  and we can  find a  as

(x-3)^2 + 9 = 8^2

(x -3)^2 = 55

x- 3  = sqrt (55)

x = sqrt(55) + 3  = a  ≈  10.42

 

 

To find b^2  we can use this equation

 

x^2 / 10.42^2  +  y^2 / b^2   =1

 

Since (x,y)  =  (3,3) is on the ellipse  then

 

3^2 /10.42^2   +  3^2 / b^2  = 1

 

9 / 10.42^2  + 9/b^2  =1

 

9 / b^2  =  1 - 9/10.42^2

 

9/b^2 = .917

 

b^2  = 9/9.17

 

b = sqrt (9/.917)  ≈  3.13

 

The  approximate  area of  the ellipse =  pi * a * b   = pi * 10.42 * 3.13 = 102.46    

 

 

 

 

cool cool cool

 Feb 20, 2025

3 Online Users

avatar
avatar